
Reverse Engineering II
FA2024 Week 06 • 2024-10-10

Nikhil Date

sigpwny{unrecovered_jumptable}

ctf.sigpwny.com

Setup
● If you haven’t installed Ghidra yet, start downloading it through the slides

here: sigpwny.com/rev_setup23

https://sigpwny.com/rev_setup23

Want to be a helper?
Congratulate yourself - you made it to week 6 of meetings 😎😎😎😎
SIGPwny has a flipped leadership model - you get invited to become a helper

Some things we look for
- You frequently attend meetings and are actively engaged with the meeting content
- You interact with other club members
- You have a learning/teaching-focused mindset

You demonstrate an interest in improving the club. This can be shown in
various ways, such as contributing to ongoing projects, sharing your
cybersecurity knowledge by running a meeting / creating challenges /
participating in CTFs, or expressing interest in {design, branding, outreach, or
marketing}

– talk to an admin / send a message on discord to let us know you want to help!
- See sigpwny.com/faq for more details

http://sigpwny.com/faq

Recap: Reverse Engineering

- Reverse Engineering: Figure out how a program works
- more broadly: get useful information out of a program

- Why reverse engineering?
- Solve reverse engineering CTF challenges and get flags
- Find vulnerabilities in software
- Makes you a better programmer
- And more

- Two major (non-exclusive) techniques
- Static analysis (today: Ghidra)
- Dynamic analysis (today: GDB)

Recap: Assembly
Sam and Emma’s slides from Sunday

https://docs.google.com/presentation/d/12iZ5mw-chlnJvzFr_KaWOWJRVn3hbNnVVscivm-93_M/edit#slide=id.g24abdce123b_0_52

What is Assembly?

- A human-readable abstraction over CPU machine codes

010010000000010111011110110000000011011100010011

48 05 DE C0 37 13

add rax, 0x1337c0de

What is Assembly?
method:

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-20], edi

 mov DWORD PTR [rbp-4], 6

 mov BYTE PTR [rbp-5], 99

 mov edx, DWORD PTR [rbp-20]

 mov eax, DWORD PTR [rbp-4]

 add eax, edx

 pop rbp

 ret

int method(int a){

 int b = 6;

 char c = 'c';

 return a+b;

}

Basic CPU Structures

Instruction Memory Registers Stack

What is this meeting about?

– Reverse engineering binaries
– Compiled executables
– All source information is usually (but not always) stripped

– What do we have to work with?
– Machine code
– Sometimes, some symbol names (like function names)
– At minimum, only what the OS needs to execute the program

Running example: debugger

– Challenge might feel completely opaque right now
– But we will be able to solve it by the end of the meeting
– Follow along!

The ELF Format
– What kind of file is debugger?

– The more information you have about the program you are reversing, the easier it is

– Use Unix “file” utility

– ELF: Executable and Linkable Format
– File format for executables, libraries, object files
– Contains program code and data, plus metadata needed to execute program
– Can also contain symbols (“not stripped”)
– More info:

https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea01
62dad366/binary/elf101/elf101.pdf

– Useful tool: readelf

https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea0162dad366/binary/elf101/elf101.pdf
https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea0162dad366/binary/elf101/elf101.pdf

Source code

Compiler (Clang/gcc)

Assembly

Compilation
Or, how does source code become an executable

Assembler

Executable
(machine code)

And also linker, but don’t
worry about the linker

right now

Source code

???

Assembly

Can we go the other way?

???

Executable
(machine code)

Source code

???

Assembly

Can we go the other way?

Disassembler

Executable
(machine code)

Easy!
(mostly)

Source code

???

Assembly

Can we go the other way?

Disassembler

Executable
(machine code)

Easy!
(mostly)

HARD!

Source code

Decompiler

Assembly

Can we go the other way?

Disassembler

Executable
(machine code)

Easy!
(mostly)

HARD!

Decompilation

We can go from C code to assembly…

https://godbolt.org/

Now go from assembly to C code 😈
Challenge: What does this do?

Now go from assembly to C code 😈
Challenge: What does this do?

Ghidra to the rescue!

- Open source disassembler/decompiler/”reverse
engineering framework”
- Disassembler: binary machine code to

assembly
- Decompiler: assembly to pseudo-C
- Reverse engineering framework: control flow

graph recovery, cross-references, binary
similarity/diffing, and more!

- Written by the NSA 😳

Ghidra caveats

Decompilation not always the
same! Many ways to write
equivalent code

Ghidra caveats

- Ghidra output is not meant to be recompilable
- It’s meant to be human-readable

- Decompilation is a best guess
- But not all information (e.g. types) is always recovered

Common Optimizations

Loading an array with bytes
- Loading first 8 bytes simultaneously into stack (in one instruction)

48 65 6c 6c 6f 20 77 6f 72 6c 64

"ow olleH" in hex

"dlr" in hex

Challenge: why is the text of the
decoded number backwards?

Common Optimizations (Cont.)

Modulo replaced with mask
- % 4 replaced with & 0b11 (Taking the last two bits of unsigned int)

Ghidra Follow Along
Open Ghidra!

sigpwny.com/rev_setup23

Download "debugger" from https://ctf.sigpwny.com/challenges

https://sigpwny.com/rev_setup23
https://ctf.sigpwny.com/challenges

- Get started:
- View all functions in list on left side of screen inside “Symbol Tree”. Double

click main to decompile main
- Decompiler:

- Middle click a variable to highlight all instances in decompilation
- Type “L” to rename variable (after clicking on it)
- “Ctrl+L” to retype a variable (type your type in the box)
- Type “;” to add an inline comment on the decompilation and assembly
- Alt+Left Arrow to navigate back to previous function

- General:
- Double click an XREF to navigate there
- Search -> For Strings -> Search to find all strings (and XREFs)
- Choose Window -> Function Graph for a graph view of disassembly

Ghidra Cheat Sheet

GDB (Dynamic Analysis)

- Able to inspect a program's variables & state as it runs
- Set breakpoints, step through, try various inputs
- Debugging analogy: print statements after running

Dynamic Analysis with GDB

- Run program, with the
ability to pause and
resume execution

- View registers, stack,
heap

- Steep learning curve
- chmod +x ./chal to

make executable

git clone

https://github.com

/pwndbg/pwndbg

cd pwndbg

./setup.sh

pwndbg

GDB Follow Along
Same file as Ghidra follow along (debugger)

Windows users - WSL
m1 mac users - pwn-docker

https://github.com/sigpwny/pwn-docker

- b main - Set a breakpoint on the main function
- b *main+10 - Set a breakpoint a couple instructions into main

- r - run
- r arg1 arg2 - Run program with arg1 and arg2 as command line arguments. Same as

./prog arg1 arg2
- r < myfile - Run program and supply contents of myfile.txt to stdin

- c - continue
- si - step instruction (steps into function calls)
- ni - next instruction (steps over function calls) (finish to return to caller function)
- x/32xb 0x5555555551b8 - Display 32 hex bytes at address 0x5555555551b8

- x/4xg addr - Display 4 hex “giants” (8 byte numbers) at addr
- x/16i $pc - Display next 16 instructions at $rip
- x/s addr - Display a string at address
- x/4gx {void*}$rcx - Dereference pointer at $rcx, display 4 QWORDs
- p/d {int*}{int*}$rcx - Dereference pointer to pointer at $rcx as decimal

- info registers - Display registers (shorthand: i r)
- x86 Linux calling convention* ("System V ABI"): RDI, RSI, RDX, RCX, R8, R9

*syscall calling convention is RDI, RSI, RDX, R10, R8, R9

GDB Cheat Sheet gdb pwndbg

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md

Pwndbg cheat sheet

- emulate # - Emulate the next # instructions
- stack # - Print # values on the stack
- vmmap - Print memory segments (use -x flag to show only executable segments)
- nearpc - Disassemble near the PC
- tel <ptr> - Recursively dereferences <ptr>
- regs - Use instead of info reg (gdb's register viewing)

Go try for yourself!

- https://ctf.sigpwny.com
- Start with Crackme 0
- Practice practice practice! Ask for help!

https://ctf.sigpwny.com

Going Further

- Side channels: e.g. instruction counting
- Symbolic/concolic execution
- Ghidra scripts
- Z3 and constraint solvers
- Emulation for dynamic analysis
- Taint analysis
- and more!
- Many of these will be covered in Rev III

Next Meetings

2024-10-13 - This Sunday
- Operational Security I with Minh and Sagnik
- Protect your digital footprint (and finally learn what passkeys

are)
2024-10-17 - Next Thursday
- Physical Security and Lockpicking with Emma
- Learn how people break into buildings and pick locks for

flags!

sigpwny{unrecovered_jumptable}
ctf.sigpwny.com

Thanks for listening!

