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Setup
● If you haven’t installed Ghidra yet, start downloading it through the slides 

here: sigpwny.com/rev_setup23

https://sigpwny.com/rev_setup23


Want to be a helper?
Congratulate yourself - you made it to week 6 of meetings 😎😎😎😎
SIGPwny has a flipped leadership model - you get invited to become a helper

Some things we look for
- You frequently attend meetings and are actively engaged with the meeting content
- You interact with other club members
- You have a learning/teaching-focused mindset

You demonstrate an interest in improving the club. This can be shown in 
various ways, such as contributing to ongoing projects, sharing your 
cybersecurity knowledge by running a meeting / creating challenges / 
participating in CTFs, or expressing interest in {design, branding, outreach, or 
marketing}

– talk to an admin / send a message on discord to let us know you want to help!
- See sigpwny.com/faq for more details

http://sigpwny.com/faq


Recap: Reverse Engineering

- Reverse Engineering: Figure out how a program works
- more broadly: get useful information out of a program

- Why reverse engineering?
- Solve reverse engineering CTF challenges and get flags
- Find vulnerabilities in software
- Makes you a better programmer
- And more

- Two major (non-exclusive) techniques
- Static analysis (today: Ghidra)
- Dynamic analysis (today: GDB)



Recap: Assembly
Sam and Emma’s slides from Sunday

https://docs.google.com/presentation/d/12iZ5mw-chlnJvzFr_KaWOWJRVn3hbNnVVscivm-93_M/edit#slide=id.g24abdce123b_0_52


What is Assembly?

- A human-readable abstraction over CPU machine codes

010010000000010111011110110000000011011100010011

48 05 DE C0 37 13

add rax, 0x1337c0de



What is Assembly?
method:

        push    rbp

        mov     rbp, rsp

        mov     DWORD PTR [rbp-20], edi

        mov     DWORD PTR [rbp-4], 6

        mov     BYTE PTR [rbp-5], 99

        mov     edx, DWORD PTR [rbp-20]

        mov     eax, DWORD PTR [rbp-4]

        add     eax, edx

        pop     rbp

        ret

int method(int a){

    int b = 6;

    char c = 'c';

    return a+b;

}



Basic CPU Structures

Instruction Memory Registers Stack



What is this meeting about?

– Reverse engineering binaries
– Compiled executables
– All source information is usually (but not always) stripped

– What do we have to work with?
– Machine code
– Sometimes, some symbol names (like function names)
– At minimum, only what the OS needs to execute the program



Running example: debugger

– Challenge might feel completely opaque right now
– But we will be able to solve it by the end of the meeting
– Follow along!



The ELF Format
– What kind of file is debugger?

– The more information you have about the program you are reversing, the easier it is

– Use Unix “file” utility

– ELF: Executable and Linkable Format
– File format for executables, libraries, object files
– Contains program code and data, plus metadata needed to execute program
– Can also contain symbols (“not stripped”)
– More info: 

https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea01
62dad366/binary/elf101/elf101.pdf

– Useful tool: readelf

https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea0162dad366/binary/elf101/elf101.pdf
https://github.com/corkami/pics/blob/28cb0226093ed57b348723bc473cea0162dad366/binary/elf101/elf101.pdf


Source code

Compiler (Clang/gcc)

Assembly

Compilation
Or, how does source code become an executable

Assembler

Executable 
(machine code)

And also linker, but don’t 
worry about the linker 

right now



Source code
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Can we go the other way?

???

Executable 
(machine code)
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Source code

Decompiler

Assembly

Can we go the other way?

Disassembler

Executable 
(machine code)

Easy! 
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Decompilation



We can go from C code to assembly…

https://godbolt.org/



Now go from assembly to C code 😈
Challenge: What does this do?



Now go from assembly to C code 😈
Challenge: What does this do?



Ghidra to the rescue!

- Open source disassembler/decompiler/”reverse 
engineering framework”
- Disassembler: binary machine code to 

assembly
- Decompiler: assembly to pseudo-C
- Reverse engineering framework: control flow 

graph recovery, cross-references, binary 
similarity/diffing, and more!

- Written by the NSA 😳



Ghidra caveats

Decompilation not always the 
same! Many ways to write 
equivalent code



Ghidra caveats

- Ghidra output is not meant to be recompilable
- It’s meant to be human-readable

- Decompilation is a best guess
- But not all information (e.g. types) is always recovered



Common Optimizations

Loading an array with bytes
- Loading first 8 bytes simultaneously into stack (in one instruction)

48 65 6c 6c 6f 20 77 6f 72 6c 64

"ow olleH" in hex

"dlr" in hex

Challenge: why is the text of the 
decoded number backwards?



Common Optimizations (Cont.)

Modulo replaced with mask
- % 4 replaced with & 0b11 (Taking the last two bits of unsigned int)



Ghidra Follow Along
Open Ghidra!

sigpwny.com/rev_setup23

Download "debugger" from https://ctf.sigpwny.com/challenges

https://sigpwny.com/rev_setup23
https://ctf.sigpwny.com/challenges


- Get started:
- View all functions in list on left side of screen inside “Symbol Tree”. Double 

click main to decompile main
- Decompiler:

- Middle click a variable to highlight all instances in decompilation
- Type “L” to rename variable (after clicking on it)
- “Ctrl+L” to retype a variable (type your type in the box)
- Type “;” to add an inline comment on the decompilation and assembly
- Alt+Left Arrow to navigate back to previous function

- General:
- Double click an XREF to navigate there
- Search -> For Strings -> Search to find all strings (and XREFs)
- Choose Window -> Function Graph for a graph view of disassembly

Ghidra Cheat Sheet



GDB (Dynamic Analysis)

- Able to inspect a program's variables & state as it runs
- Set breakpoints, step through, try various inputs
- Debugging analogy: print statements after running



Dynamic Analysis with GDB

- Run program, with the 
ability to pause and 
resume execution

- View registers, stack, 
heap

- Steep learning curve
- chmod +x ./chal to 

make executable



git clone 

https://github.com

/pwndbg/pwndbg

cd pwndbg

./setup.sh

pwndbg



GDB Follow Along
Same file as Ghidra follow along (debugger)

Windows users - WSL
m1 mac users - pwn-docker 

https://github.com/sigpwny/pwn-docker


- b main - Set a breakpoint on the main function
- b *main+10 - Set a breakpoint a couple instructions into main

- r - run 
- r arg1 arg2 - Run program with arg1 and arg2 as command line arguments. Same as 

./prog arg1 arg2
- r < myfile - Run program and supply contents of myfile.txt to stdin

- c - continue
- si - step instruction (steps into function calls)
- ni - next instruction (steps over function calls) (finish to return to caller function)
- x/32xb 0x5555555551b8 - Display 32 hex bytes at address 0x5555555551b8

- x/4xg addr - Display 4 hex “giants” (8 byte numbers) at addr
- x/16i $pc - Display next 16 instructions at $rip
- x/s addr - Display a string at address
- x/4gx {void*}$rcx - Dereference pointer at $rcx, display 4 QWORDs
- p/d {int*}{int*}$rcx - Dereference pointer to pointer at $rcx as decimal

- info registers - Display registers (shorthand: i r)
- x86 Linux calling convention* ("System V ABI"): RDI, RSI, RDX, RCX, R8, R9

*syscall calling convention is RDI, RSI, RDX, R10, R8, R9

GDB Cheat Sheet            gdb                                pwndbg

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md


Pwndbg cheat sheet

- emulate # - Emulate the next # instructions
- stack # - Print # values on the stack
- vmmap - Print memory segments (use -x flag to show only executable segments)
- nearpc - Disassemble near the PC
- tel <ptr> - Recursively dereferences <ptr>
- regs - Use instead of info reg (gdb's register viewing)



Go try for yourself!

- https://ctf.sigpwny.com
- Start with Crackme 0
- Practice practice practice! Ask for help!

https://ctf.sigpwny.com


Going Further

- Side channels: e.g. instruction counting
- Symbolic/concolic execution
- Ghidra scripts
- Z3 and constraint solvers
- Emulation for dynamic analysis
- Taint analysis
- and more!
- Many of these will be covered in Rev III



Next Meetings

2024-10-13 - This Sunday
- Operational Security I with Minh and Sagnik
- Protect your digital footprint (and finally learn what passkeys 

are)
2024-10-17 - Next Thursday
- Physical Security and Lockpicking with Emma
- Learn how people break into buildings and pick locks for 

flags!
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Thanks for listening!


