
Cloud and Modern
Infrastructure Security

FA2023 Week 15 • 2023-12-03

Sagnik Chakraborty

Announcements

- This Thursday, we might have a chill party or study session!

sigpwny{4_cl0udy_d4y_or_4_z3ro_d4y}

ctf.sigpwny.com

General Overview

- CI/CD pipelines
- Overview
- Methodology
- Artifact Poisoning

- Cloud-based
Toolchains
- Overview
- Terraform
- Uncovering Cloudflare

The Don’t Go To Jail Disclaimer

– This has been said in the beginning of the year, but beware
that you cannot access information that isn’t allowed to be
accessed by you without explicit permission from the
distributors

– Even if it is in good faith, you may be held liable for any
damages that result from poking around places you shouldn’t
be in!

What exactly is the cloud

Modern Security toolchains
What do we use nowadays to automate/scan for bad software?
What do they miss?

● IaC tool to automate
deployment of firewalls and
network segmentation

● Organizations can define
custom policies to match their
business requirements

● Handles API keys and other
sensitive information securely

Terraform

How to use Terraform?

● Terraform files are written in
HCL

● terraform init -> plan ->
apply on example.hcl to
create and manage state file

State Configuration

Terraform’s Threat Model

- Some common threats in the Terraform threat model:
- Unauthorized access to resources or sensitive information → this can

stem from something like a faulty IAM role policy (can allow users to
assume roles upon request may lead to privilege escalation)

- Infrastructure tampering, leading to unapproved changes or
unauthorized deployments → Not properly authorizing artifacts for
deployment can lead to something serious… more on that on the
next section

- Mitigating such threats requires us to follow a strict set of protocols

Security Considerations

● Enable server-side
encryption for state config

● Enable state locking to
disable concurrent
modifications on the state
file

● Ensure permissions are
properly disbursed with
IAM tools

Code scanners

- Infrastructure that has been
serviced on the cloud must
always be subject to a
continuous stream of
checks to ensure that they
are safe from any potential
backdoors

- We can use SAST scans in
deployment pipelines (e.g.
SNYK) to continuously
check software before
integration into a workflow

Cloudflare

- Provides a CDN service on a large distributed network → used in
a lot of web applications for fast and secure performance

- Cloudflare improves web app security by serving as a reverse
proxy for your web app’s traffic
- This would be a server sitting in front of web servers and forwards client

requests over to those web servers

Uncovering webservers locked behind
cloudflare
- There are tools out there that can help you get the historical DNS

records of a given domain (e.g. SecurityTrails) or checking historical
SSL certificates that point to the origin IP address from a reverse
proxy
- From last week: If you find an SSRF inside the web application you can

abuse it to obtain the IP address of the original server and get the files
- If you have a set of potential IPs where the web page, you can use the

tool hakoriginfinder

- More exploits can be found on hacktricks

https://securitytrails.com/
https://github.com/hakluke/hakoriginfinder
https://cloud.hacktricks.xyz/pentesting-ci-cd/cloudflare-security

Hakoriginfinder:
You can check if the tool is working with

prips 1.0.0.0/30 | hakoriginfinder -h one.one.one.one

If you know the company is using AWS you could use the previous tool to
search the

web page inside the EC2 IPs

DOMAIN=something.com

WIDE_REGION=us

for ir in `curl https://ip-ranges.amazonaws.com/ip-ranges.json | jq -r
'.prefixes[] | select(.service=="EC2") | select(.region|test("^us")) |
.ip_prefix'`; do

echo "Checking $ir"

prips $ir | hakoriginfinder -h "$DOMAIN"

done

CI/CD pipeline security
How we secure pipelines in modern DevSecOps?

CI/CD Overview

- After development or completion of a task, normally we would
like to be able to immediately integrate it and see the updates
in live time

- CI (continuous integration) – workflow automation that allows
us to automatically test code and verify correctness and
robustness before merging it with whatever is existing

- CD (continuous deployment) – automatically push the
completed products to the right parties

What could go wrong?

- Suppose that our code passed all the checks during CI that
allows it to pass as a good build
- Now the workflow will place everything into a neat little package and

export it as an artifact
- What happens if I want to transmit this artifact across more

than one workflow?

Artifact Poisoning

- Alteration or modification of software artifacts and packages
by a malicious actor

- Any time you have an artifact that has been transmitted
across multiple different workflows, make sure it is sanitized

Artifact Poisoning

Artifact Poisoning
Actions Download libgccjit.so
file from the antoyo/gcc repo

Set appropriate env paths for
the library for the user’s system

This doesn’t distinguish the master repo
from forked versions. 💀

Rust Artifact Poisoning Workflow

Mitigations for artifact poisoning
- Cosign – a toolchain and standard for signing, verifying and

assuring software integrity through key pairs
- Given a path to the artifact registry and a private key, cosign

generates and uploads a signature to the registry. The path the looks
like this:
registry/image:sha256-4fb53f12d2ec18199f16d7c305a12c54cd

a68cc622484bfc3b7346a44d5024ac.sig

- By signing artifacts before uploading them to the registry, you
guarantee that the artifacts were not tampered with after they
have been uploaded…right?

It’s not joever.

- Along with cosigning, you can also tag artifacts for release
mapped to a specific version

- This could be dangerous!
- So, you have your package ready for uploading. You add the v1.1

tag, upload it to the registry, then invoke cosign on image:v1.1 to
sign it. OOPS!

- A malicious actor could still add a malicious artifact to the
registry and make you sign it

How to do that?

- An artifact with v1.1 stored in
registry

- A malicious actor with access to
the registry uploads a fake
artifact, namely to the path
image:v1.1

- When the CI/CD uses cosign
sign to verify the artifacts with a
privkey, it reads the artifact from
the path, but the path points to a
bad artifact!

A fix: Use digests

- Digests work because they map directly to the image
- Verifying the image from before will fail because the digest

generated from the signature will not match the digest from
the fake artifact

Resources for cloudsec testing

- Hacktricks cloud – a collection of overviews between different
exploits, including the ones we talked about. There are also a
couple of ones not cover, such as IAM role escalation

- Blog post 1 and Blog post 2 from LegitSecurity were used for
the artifact poisoning part of this slide. LegitSecurity covers a
multitude of many other cloudsec vulns from the past

- Exploit DB

https://cloud.hacktricks.xyz/
https://www.legitsecurity.com/blog/artifact-poisoning-vulnerability-discovered-in-rust
https://www.legitsecurity.com/blog/why-you-can-still-get-hacked-even-after-signing-your-software-artifacts#using-cosign-with-artifact-tagging-is-a-security-risk!
https://www.exploit-db.com/

Next Meetings

Good luck on finals and happy winter break!

sigpwny{4_cl0udy_d4y_or_4_z3ro_d4y}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

