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The problem of distinguishing prime numbers
from composite numbers and of resolving the
latter into their prime factors is known to
be one of the most important and useful in
arithmetic. It has engaged the industry and
wisdom of ancient and modern geometers to
such an extent that it would be superfluous
to discuss the problem at length.

Further, the dignity of the science itself
seems to require that every possible means
be explored for the solution of a problem so
elegant and so celebrated.

Carl Friedrich Gauss



Section O

Preliminaries

Uz



Primes

® A prime is any number p such that its only
divisors are 1 and p.

® Example of primes: 2,3,5,7,11,13,---

® Any integer can be uniquely factored into prime
numbers



Modular Arithmetic

® We say that z =y (mod n) if n cleanly divides
r—Yy
® This has similar properties to =, i.e. we can

add, subtract and multiply on both sides

® Division is different: 27! mod n exists only if

x and n share no divisors (this is important
later on)
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Trial Division

® As a first naive approach, we can start trying to
divide numbers into N and see if they divide
evenly

® Any factor d of N has a corresponding factor
N/d = we only need to check d < VN

® In fact, we only need to check primes p < VN



Sieve of Eratosthenes
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Sieve of Eratosthenes
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Sieve of Eratosthenes
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Brief Aside: Factorization Before
Computers



Fuler and Fermat

Fermat had held, even though he had confessed that he
frankly was unable to prove it, that all numbers of

the form 22™ + 1 are prime [...]

And so since I wanted to ezamine the truth of this
renowned claim of Fermat for the case of 2 + 1,
I managed a huge shortening of this, by not having

to try division by any prime numbers except those
expressible in the form 64n + 1.

And so with the problem reduced to this, I soon
discovered that by setting n = 10, the prime number
641 is a divisor of the number 2°° 4 1.



Lehmer Sieves

She had seen a light and had stopped the whirling
wheels. Again the tell-tale ray of light was located
and again the number 5,283,065,753,709,209 was given
as a square plus seven times another square. The
machine had done its duty. These two results were
all that was necessary. A few minutes computation
still remained, and thus it was, while coffee was
being served on one of the working tables in the
laboratory the big number was broken up into the
factors 59,957 and 88,114,244,437. These are the two
hidden numbers which when multiplied together will
give the sizteen digit number under ezamination. It
may seem to the man in the street an odd thing to get
excited about, but on this occasion

All Rome sent forth a
rapturous cry,

And even the ranks of Tuscany
Could scarce forbear to
cheer.

&
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Pollard Rho

Let N = pk, where p is small factor. Let f(x)=p(x)
mod N be any suitable polynomial, usually
p(r) =22 + 1.



Pollard Rho

X2 = f(xi)
= F(f(x0))

X1 = F(xe)

X3 = f(xz2)

F(F(F(x0)))

X3 mod p




Pollard Rho: Example

N = 142741636831523 = 52051 - 2742341873




Pollard Rho: Algorithm

f = lambda x: (x*x + 1) 7 N
x = 2
y =2
d =
while d == 1 or 4 == N:
x = f(x)
y = £(£(y))

d = gcd(abs(x-y), n)

&



Pollard Rho: Application

Factorization of the Eighth Fermat Number 28
F; g = 2 +1

By Richard P. Brent and John M. Pollard

Abstract, We describe & Monte Carlo factorizaton agorithm which was usd o
Rt o T reviouty F was w10 e compons it st
‘unknown,

1. Introduction. Brent [1] recently proposed an improvement to Pollard’s Monte

e s e = 1238926361552897 - 934 - - - 321

olrh\rge integer in O(p'/?) operations. 16 digitS 62 digits

his paper we describe a mdifcation of Brent’s ;Igom.hm which is useful
when the factors are known 10 lic in a certain congruence class. To test its
effectiveness, the algorithm was applied 1o the Fermat mumbers Fo=2+1,
5< k < 13. The least factors of all but Fy were known [2], and F; was known (o be
composite. The algorithm rediscovered the known factors and also found the
previously unknown factor 1,238,926,361,552,897 of Fy.*
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ECM: Point Addition
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Addition P+ @
“Chord rule”

Doubling P+ P
“Tangent rule”




ECM: Changing Fields
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ECM: A Problem and A Solution

® To calculate the sum of two points, we need to
calculate multiplicative inverses.

® This is fine over R, but this may not work
mod N.

® However, this failure allows us to find a factor
of N, if 27! (mod N) does not exist, then z and
N share a factor



ECM: Application

FACTORIZATION OF THE TENTH AND ELEVE]
FERMAT NUMBERS

rization of the tenth and eleventh Fermat numbers

s with 8 10.
e factors with 6, 6.

We describ » complete f2
i ct of four prime

is a product of five pr

ABSTRACT
The tenth Fermat n
ts. The eleventh

decimal digits. We also note a new it factor of the thirteenth Fermat number

This number has four known prime factors and & ~decimal digit c ite factor. All th
ed h found by the elliptic curve methe . The 40-digit f

of the tenth Fermat number was found after about 140 Mflop-years of computation. We di

aspects of the practical implementation of ECM, including the use of special-purpose hard

and note several other la

1l dig

factors found recently by E

= 22" | 1 = 45592577 - 6487031809 - 465---897 - 130 --577
—_— —)/ — —/—

8 digits 8 digits 40 digits 257 digits

= 22" 41 = 319489 - 974849 - 167---137 - 356---513 - 173---177
—_——— —— Y—) — —
6 digits 6 digits 21 digits 22 digits 564 digits
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Interlude

Juick! Factor 4819.




Hint

4819 = 4900 — 81



Hint

4819 = 4900 — 81 = 70? — 92
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Hint

4819 = 4900 — 81 = 702 — 92 = (70 + 9)(70 — 9) = 79 - 61



Fermat’s Method

This is an example of Fermat’s method of
factorization - however, for general N, it is quite
hard to find integers z,y such that x?
alternatively z? = y? (mod N)

—y>=N or



Let’s try to factor N =1791 with this method.

412=32 (mod N)
422 =115 (mod N)
432 =200 (mod N)

This seems hopeless - none of the values on the
right hand side are perfect squares...



Solution: Combine Congruences

Notice that 32-200 = 802. We therefore have

41% - 43% = (41-43)% = 114% = 32-200 = 80> (mod N)

We therefore have that (114 —80)(114 4 80) = kN for
some integer k - therefore, gcd (114 —80,N) =17 is a
nontrivial factor of IN.



How to pick congruences?

® Define an integer to be B-smooth if none of its
prime factors exceed B.

® Through stieving (similar to the Sieve of
Eratosthenes), we can get pairs (z;,y; =7 — N)
such that z? — N is B-smooth



How to pick congruences?

Let’s say we have pairs (z1,y1) - (Zn,yn). To get a
successful factorization, we need to pick a subset
of y; such that [[;y; is a perfect square.



How to pick congruences?

® Since y; are B-smooth, we can write y; :H1§jgkp§j
where pj,po, - ,pr are the primes below B.

® Define the ezponent wvector of y; :H1<j<kp§j to
be the vector [e;---eg]



Why the exponent vector?

€1,.€2

Let’s say that we have that we have y, = p; p, ‘-pzk

and y, = pi'p? - plk

We then have that

Yo Yo = (P57 D) - (' pd - pfF)

_ p?+f1p§2+f2 . _ka"l‘fk
Reading off exponent vectors, we therefore have that
multiplying y values 15 equivalent to adding their
exponent vectors



And what about the perfect square?

Note that for any perfect square, we have that
2e1, 2 p)
K = (01'05 o) = o1 0™ oy
Reading off the exponent vector, we have that a
perfect square will have an exponent vector of all

even numbers



Nobody Expects Linear Algebra

Using exponent vectors, we can reframe the problem
as saying that we want a sum of some exponent
vectors such that all of the entries are even - this
is equivalent to the zero vector mod 2.

This can be recast as a problem of linear algebra
over Fy. Additionally, the theorems from linear
algebra tell us that we need k+ 1 relationships in
order to find a subset that sums to the zero vector.



Quadratic Sieve: A Recap

1.

Choose a smoothness bound B (advanced math says
that a good bound is (evh””nh”ﬁ% but this can be
tuned to taste), and let mw(B) be the number of
primes less than B

. Starting with z; = [VN], use sieving to find

m(B) +1 values of (w;,y; =x? — N) such that y; is
B-smooth; generate the corresponding exponent
vectors for each y; mod 2

. Use linear algebra to find a subset of these

exponent vectors that sum to the zero vector in
Fy.

. Use the method described above to get a

factorization of N as in Fermat’s method.



Quadratic Sieve: Application

Contrast this with the difficulty
of finding the two prime factors

9686 9613 7546 2206

1477 409 2225 4355 of a 125-or 126-digit number
8829 0575 9991 1245 . . .

7a1 o 6ot 208 obtained by multiplying two

0816 2982 2514 5708 _ . . .

ssso o7 s 0836 63-digit primes. If the best
8o62 8013 301e 9055 algorithm known and the fastest

1829 9451 5781 5154

of today’s computers were used,
Rivest estimates that the running
N =114---541 time required would be about
N——— X i
129 digits 40 quadrillion years!

A ciphertext challenge worth $100




Quadratic Sieve: Application

THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE

Extended Abstract
Derek Atkins', Michael Graff?, Ar Lenstra®, Paul C. Ley

12 Rindge Avenuc

N =349.--577-327---533
64 digits 65 digits

which resulted in the title o
f the dat
the important
uble large prir

uli

the Internet, We conclude y-us A m
ganization e million dollars




An Improvement

Note that the candidates that we pick in the sieving
step are of the order O(v/N).

If we could reduce the size of these candidates,
then they would have a higher probability of being
smooth — therefore decreasing the runtime.



The Number Field Sieve

Enter the number field
T— sieve - the currently
' fastest known algorithm
THE FACTORIZAT! HE NINTH FERMAT NUMBER known to factor numbers.
A K LENSTRA, H. W. LENSTRA, IR., M. S. MANASSE, AND 1. M. POLLARD It finds P erfect s quares
Dedicated to the memory of D. H. Lehmer
in so called number fields
ABSTRACT. In this paper we exhibit the full prime factorization of the ninth
Rove 7, 4, 0 95 ae_ufmu;.:;A"l»{se'?:u:rf?::.\::, argn prime fators by - in the case of the

means of the number field sieve, which is a factoring algorithm that depends on

arithmetic in an algebraic number field. In the present case, the number field

used was Q(¥2) . The calculations were done on approximately 700 worksta- f actor i zat 1 on of F9 , the

tions scattered around the world, and in one of the final stages a supercomputer
was used. The entire factorization took four months.

number field was Q[V/2]



Number Fields

Any element of Q[v/2] can be written as
a+b-2/54¢.22/544.235 f ¢.2%5 for rational a,b,c,d
Multiplication can be defined naturally - more
internals of how this works is beyond the scope of
this talk.



</math>
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Academic Factoring Efforts

Binary Digits
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Advances in Hardware
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TI Signing Controversy

® In order to prevent
modification, the operating
system on the TI-84 was
verified with a 512-bit RSA
key

® This was factored in 2009
over 73 days

® Ted to some backlash by TI

N

R




FREAK Attack

® Published in 2015

Taming the Comp s of TLS ® Man in the middle attack
found in TLS protocol that
forces the use of RSA
moduli of 512 bits

¢ Affected many mobile and
desktop browsers




Weak Keys were Prevalent

Proportion of Keys Scanned
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...but Not So Much Anymore

SSH Key Sizes (Data from Censys Scan 2/2022)
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Things Can Still Go Wrong
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Things Can Still Go Wrong

® claims to use RSA-1024

® 128 byte modulus # 128 digit modulus

not factorable factorable

Original Blog Post


https://web.archive.org/web/20161112053401/http://blog.cassidiancybersecurity.com/post/2014/02/Bitcrypt-broken
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512 bit keys are clearly broken, what
about 10247



TWIRL

® Theoretical device
created by Shamir (the
S in RSA) and Tromer
in 2003.

® Can do sieving step of
NFS for 1024-bit
modulus for $10
million over 1 year.

® Linear algebra and
remaining steps take
less effort.



Enter Quantum

There exists an algorithm that can run on quantum
computers that can factor numbers in polynomial time
- Shor’s algorithm



Enter Quantum

Briefly, the algorithm entails using quantum magic
to find the period of the sequence a,az,a?’,'-- ,ak(
(mod N)) to then find a non-trivial square root mod

N, similar to the sieving algorithms we saw earlier.



Enter Quantum

However, due to the the size of quantum computers
needed to implement Shor’s algorithm, at least now,
it remains impractical to use for integers larger
than a few thousand

See here for more details


http://shorturl.at/csOV8

Takeaways

® Factoring is hard - we use this to hide messages

® RSA can be vulnerable - not only too short keys,
but other methods not described here! (Bad
primes = pwnage)

® Use ECC (elliptic curves) if possible - more
efficient, still vulnerable

® Quantum will break crypto soon!M


https://www.cs.umd.edu/class/fall2018/cmsc818O/papers/ps-and-qs.pdf
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf
https://eprint.iacr.org/2013/599.pdf
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