
Factoring Beyond FactorDB

Husnain

The problem of distinguishing prime numbers
from composite numbers and of resolving the
latter into their prime factors is known to
be one of the most important and useful in
arithmetic. It has engaged the industry and
wisdom of ancient and modern geometers to
such an extent that it would be superfluous
to discuss the problem at length. ...
Further, the dignity of the science itself
seems to require that every possible means
be explored for the solution of a problem so
elegant and so celebrated.

Carl Friedrich Gauss

Section 0

Preliminaries

Primes

• A prime is any number p such that its only
divisors are 1 and p.

• Example of primes: 2, 3, 5, 7, 11, 13, · · ·
• Any integer can be uniquely factored into prime

numbers

Modular Arithmetic

• We say that x ≡ y (mod n) if n cleanly divides
x − y

• This has similar properties to =, i.e. we can
add, subtract and multiply on both sides

• Division is different: x−1 mod n exists only if
x and n share no divisors (this is important
later on)

Section 1

Basic Algorithms

Trial Division

• As a first naive approach, we can start trying to
divide numbers into N and see if they divide
evenly

• Any factor d of N has a corresponding factor
N/d =⇒ we only need to check d ≤

√
N

• In fact, we only need to check primes p <
√

N

Sieve of Eratosthenes

Sieve of Eratosthenes

Sieve of Eratosthenes

Sieve of Eratosthenes

Sieve of Eratosthenes

Brief Aside: Factorization Before
Computers

Euler and Fermat

Fermat had held, even though he had confessed that he
frankly was unable to prove it, that all numbers of

the form 22m
+ 1 are prime [...]

And so since I wanted to examine the truth of this
renowned claim of Fermat for the case of 232 + 1,
I managed a huge shortening of this, by not having
to try division by any prime numbers except those
expressible in the form 64n + 1.
And so with the problem reduced to this, I soon
discovered that by setting n = 10, the prime number
641 is a divisor of the number 232 + 1.

Lehmer Sieves

She had seen a light and had stopped the whirling
wheels. Again the tell-tale ray of light was located
and again the number 5,283,065,753,709,209 was given
as a square plus seven times another square. The
machine had done its duty. These two results were
all that was necessary. A few minutes computation
still remained, and thus it was, while coffee was
being served on one of the working tables in the
laboratory the big number was broken up into the
factors 59,957 and 88,114,244,437. These are the two
hidden numbers which when multiplied together will
give the sixteen digit number under examination. It
may seem to the man in the street an odd thing to get
excited about, but on this occasion

All Rome sent forth a
rapturous cry,
And even the ranks of Tuscany
Could scarce forbear to
cheer.

Section 2

Extracting Small Factors

Pollard Rho

Let N = pk, where p is small factor. Let f(x) = p(x)
mod N be any suitable polynomial, usually
p(x) = x2 + 1.

Pollard Rho

Pollard Rho: Example

N = 142741636831523 = 52051 · 2742341873

Pollard Rho: Algorithm

f = lambda x: (x*x + 1) % N
x = 2
y = 2
d = 1
while d == 1 or d == N:

x = f(x)
y = f(f(y))
d = gcd(abs(x-y), n)

Pollard Rho: Application

F8 = 228 + 1

= 1238926361552897︸ ︷︷ ︸
16 digits

· 934 · · · 321︸ ︷︷ ︸
62 digits

ECM: Intro

Image Credit: https://www.iacr.org/authors/tikz/

ECM: Point Addition

Image Credit: https://www.iacr.org/authors/tikz/

ECM: Changing Fields

Image Credit: https://www.iacr.org/authors/tikz/

ECM: A Problem and A Solution

• To calculate the sum of two points, we need to
calculate multiplicative inverses.

• This is fine over R, but this may not work
mod N.

• However, this failure allows us to find a factor
of N, if x−1 (mod N) does not exist, then x and
N share a factor

ECM: Application

F10 = 2210 + 1 = 45592577︸ ︷︷ ︸
8 digits

· 6487031809︸ ︷︷ ︸
8 digits

· 465 · · · 897︸ ︷︷ ︸
40 digits

· 130 · · · 577︸ ︷︷ ︸
257 digits

F11 = 2211 + 1 = 319489︸ ︷︷ ︸
6 digits

· 974849︸ ︷︷ ︸
6 digits

· 167 · · · 137︸ ︷︷ ︸
21 digits

· 356 · · · 513︸ ︷︷ ︸
22 digits

· 173 · · · 177︸ ︷︷ ︸
564 digits

Section 3

Sieving out Larger Factors

Interlude

Quick! Factor 4819.

Hint

4819 = 4900 − 81

Hint

4819 = 4900 − 81 = 702 − 92

Hint

4819 = 4900 − 81 = 702 − 92 = (70 + 9)(70 − 9) = 79 · 61

Fermat’s Method

This is an example of Fermat’s method of
factorization – however, for general N, it is quite
hard to find integers x, y such that x2 − y2 = N or
alternatively x2 ≡ y2 (mod N)

Let’s try to factor N = 1791 with this method.

412 ≡ 32 (mod N)
422 ≡ 115 (mod N)
432 ≡ 200 (mod N)

This seems hopeless - none of the values on the
right hand side are perfect squares...

Solution: Combine Congruences

Notice that 32 · 200 = 802. We therefore have

412 · 432 = (41 · 43)2 ≡ 1142 ≡ 32 · 200 = 802 (mod N)

We therefore have that (114 − 80)(114 + 80) = kN for
some integer k - therefore, gcd (114 − 80, N) = 17 is a
nontrivial factor of N.

How to pick congruences?

• Define an integer to be B-smooth if none of its
prime factors exceed B.

• Through sieving (similar to the Sieve of
Eratosthenes), we can get pairs (xi, yi = x2

i − N)
such that x2

i − N is B-smooth

How to pick congruences?

Let’s say we have pairs (x1, y1) · · · (xn, yn). To get a
successful factorization, we need to pick a subset
of yi such that

∏
i yi is a perfect square.

How to pick congruences?

• Since yi are B-smooth, we can write yi =
∏

1≤j≤k p
ej

j

where p1, p2, · · · , pk are the primes below B.
• Define the exponent vector of yi =

∏
1≤j≤k p

ej

j to
be the vector [e1 · · · ek]

Why the exponent vector?

Let’s say that we have that we have ya = pe1
1 pe2

2 · · · pek
k

and yb = pf1
1 pf2

2 · · · pfk
k

We then have that

ya · yb = (pe1
1 pe2

2 · · · pek
k) · (pf1

1 pf2
2 · · · pfk

k)

= pe1+f1
1 pe2+f2

2 · · · pek+fk
k

Reading off exponent vectors, we therefore have that
multiplying y values is equivalent to adding their
exponent vectors

And what about the perfect square?

Note that for any perfect square, we have that
k2 = (pe1

1 pe2
2 · · · peN

N)2 = p2e1
1 p2e2

2 · · · p2eN
N

Reading off the exponent vector, we have that a
perfect square will have an exponent vector of all
even numbers

Nobody Expects Linear Algebra

Using exponent vectors, we can reframe the problem
as saying that we want a sum of some exponent
vectors such that all of the entries are even - this
is equivalent to the zero vector mod 2.
This can be recast as a problem of linear algebra
over F2. Additionally, the theorems from linear
algebra tell us that we need k + 1 relationships in
order to find a subset that sums to the zero vector.

Quadratic Sieve: A Recap

1. Choose a smoothness bound B (advanced math says
that a good bound is (e

√
ln n ln ln n)

1
2 but this can be

tuned to taste), and let π(B) be the number of
primes less than B

2. Starting with xi = ⌈
√

N⌉, use sieving to find
π(B) + 1 values of (xi, yi = x2

i − N) such that yi is
B-smooth; generate the corresponding exponent
vectors for each yi mod 2

3. Use linear algebra to find a subset of these
exponent vectors that sum to the zero vector in
F2.

4. Use the method described above to get a
factorization of N as in Fermat’s method.

Quadratic Sieve: Application

N = 114 · · · 541︸ ︷︷ ︸
129 digits

Contrast this with the difficulty
of finding the two prime factors
of a 125-or 126-digit number
obtained by multiplying two
63-digit primes. If the best
algorithm known and the fastest
of today’s computers were used,
Rivest estimates that the running
time required would be about
40 quadrillion years!

Quadratic Sieve: Application

N = 349 · · · 577︸ ︷︷ ︸
64 digits

· 327 · · · 533︸ ︷︷ ︸
65 digits

An Improvement

Note that the candidates that we pick in the sieving
step are of the order O(

√
N).

If we could reduce the size of these candidates,
then they would have a higher probability of being
smooth − therefore decreasing the runtime.

The Number Field Sieve

Enter the number field
sieve - the currently
fastest known algorithm
known to factor numbers.
It finds perfect squares
in so called number fields
- in the case of the
factorization of F9, the
number field was Q[5√2]

Number Fields

Any element of Q[5√2] can be written as
a + b · 21/5 + c · 22/5 + d · 23/5 + e · 24/5 for rational a, b, c, d
Multiplication can be defined naturally - more
internals of how this works is beyond the scope of
this talk.

</math>

Section 4

Applications

Academic Factoring Efforts

Advances in Hardware

TI Signing Controversy

• In order to prevent
modification, the operating
system on the TI-84 was
verified with a 512-bit RSA
key

• This was factored in 2009
over 73 days

• Led to some backlash by TI

FREAK Attack

• Published in 2015
• Man in the middle attack

found in TLS protocol that
forces the use of RSA
moduli of 512 bits

• Affected many mobile and
desktop browsers

Weak Keys were Prevalent

...but Not So Much Anymore

Things Can Still Go Wrong

1024 bit key −→ 512 bit key due to encoding issues

Things Can Still Go Wrong

• claims to use RSA-1024
• 128 byte modulus︸ ︷︷ ︸

not factorable

̸= 128 digit modulus︸ ︷︷ ︸
factorable

Original Blog Post

https://web.archive.org/web/20161112053401/http://blog.cassidiancybersecurity.com/post/2014/02/Bitcrypt-broken

Section 5

The Future?

512 bit keys are clearly broken, what
about 1024?

TWIRL

• Theoretical device
created by Shamir (the
S in RSA) and Tromer
in 2003.

• Can do sieving step of
NFS for 1024-bit
modulus for $10
million over 1 year.

• Linear algebra and
remaining steps take
less effort.

Enter Quantum

There exists an algorithm that can run on quantum
computers that can factor numbers in polynomial time
- Shor’s algorithm

Enter Quantum

Briefly, the algorithm entails using quantum magic
to find the period of the sequence a, a2, a3, · · · , ak(
(mod N)) to then find a non-trivial square root mod
N, similar to the sieving algorithms we saw earlier.

Enter Quantum

However, due to the the size of quantum computers
needed to implement Shor’s algorithm, at least now,
it remains impractical to use for integers larger
than a few thousand

See here for more details

http://shorturl.at/csOV8

Takeaways

• Factoring is hard - we use this to hide messages
• RSA can be vulnerable - not only too short keys,

but other methods not described here! (Bad
primes = pwnage)

• Use ECC (elliptic curves) if possible - more
efficient, still vulnerable

• Quantum will break crypto soonT M

https://www.cs.umd.edu/class/fall2018/cmsc818O/papers/ps-and-qs.pdf
https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_ccs17_preprint.pdf
https://eprint.iacr.org/2013/599.pdf

	Preliminaries
	Basic Algorithms
	Extracting Small Factors
	Sieving out Larger Factors
	Applications
	The Future?

