
Week 14
Mobile Application Hacking

Pete

Announcements

• Last meeting!
• Due to MetaCTF, no challenges

sigpwny{not_so_free_gems}

Table of Contents

• What is mobile app hacking?
• Mobile app tooling
• Why Android Reversing?
• Facets of Android Reversing

• Unpacking & Repacking Applications
• User Data Modifications
• API Sniffing / Certificate Pinning

• Challenge Walkthrough

What is mobile app hacking?

• Given a compiled application, perform some modification in order
to gain information
• User personal information
• Modify high-scores / in-app currency
• Expose internal APIs
• Circumvent security checks (i.e. PINs / license key checks)

• Apps are turned from source code (Objective-C or swift on iOS /
Java or Kotlin on android) into app files
• frameworks like flutter and react native are slightly different…(more on this later)

• essentially a zip file
• iOS - .ipa
• android - .apk (literally a zip file)

Mobile app tooling

IDA / Ghidra
• Static analysis of program flow

Frida(covered in-depth later)

• Closest thing to a debugger - Hook into running app and modify it (like CheatEngine)
• Objection - Builds on top of frida
• MobSF - Builds on top of frida

Android Static Analysis
• jadx / dex2jar

• apk to .java decompilation / resources
• apktool

• apk to .smali / resources & repacking
Compiled Java Analysis
• Bytecode Viewer

• .class -> .java decompilation using multiple different tools
• JD-GUI

Why Start with Android Reversing?

1. Improved Tooling
a. Better tooling makes it much easier to reverse
b. apk -> java source code helps immensely

2. Better resources
a. A lot more information is available online

3. Application reuse
a. Most apps are released on both iOS and Android
b. Similar code base = only have to reverse Android

Android Static Reversing Difficulty
Scale

Program was written in React Native
● Use APKTool to dump files, locate /assets/index.android.bundle (the bundled JS file)

Program was written with Native Libs
● Use APKTool to dump files
● Use JADX to figure out what native libraries were loaded (System.loadLibrary or System.Load)
● Use Ghidra to analyze native libraries

Program was written in Unity
● Use APKTool to dump files, locate compiled unity game (libil2cpp.so), decompile into DLLs with Il2CppDumper, analyze in

dnSpy or Ghidra

Program was written in Java or Kotlin
● Use JADX or (APKTool+java decompiler) to recover original .java files, analyze

Program was written with Flutter
● Cry because flutter is executed with the Dart VM, making it very hard to analyze (see the RE chall hell for why VMs are hard)
● Tools such as Doldrums, reFlutter, and darter can identify function signatures in libapp.so

https://github.com/rscloura/Doldrums
https://github.com/ptswarm/reFlutter
https://github.com/mildsunrise/darter

User Data
Modifications

Hacking crossy road!

Setup

• Install Android Studio, make a AVD (Android Virtual Device) without the play
store
• Google doesn’t allow you to root an emulator w/ play store

ADB - Android Debug Bridge
• Allows us to have full control of the emulator
• Download the Crossy Road APK
• Sideload the Crossy Road APK onto emulator
• Play the game to ensure everything is working

Analysis

Objective: Change High Score
Since Crossy Road works offline, we know game data is stored on-device

Locate file in /data/data/*.crossyroad containing score, and download

Execution

Result

Frida Demo

Setup

• Decompile APK to java using JADX, get frida running

Frida

 main.py hook.js

import frida
device = frida.get_usb_device()
pid = device.spawn(["com.demo.demoapp"])
session = device.attach(pid)
script = session.create_script(open("hook.js").read())
script.load()
device.resume(pid)

Prevent the script from terminating

input()

console.log("My first frida script!");

Circumventing Check

Java.perform(function() {
 // Retrieve the class with Java.use
 const System = Java.use("java.lang.System");
 // Select the correct overload of getProperty
 const propertyMethod = System.getProperty.overload('java.lang.String');
 // Modify the implementation
 propertyMethod.implementation = function (prop) {
 // Log the event
 console.log("getProperty('" + prop.toString() + "') called");
 // Log the original value
 const ret = propertyMethod.call(this, prop);
 console.log("Value is: '" + ret + "'");
 // Change the return value
 return "Russia";
 }

});

Summary

Frida is like tampermonkey for iOS and android apps
• can “hook” functions, and

• read values
• modify outputs
• change function / class implementation

APIs & Certificate
Pinning

API Sniffing

• Many apps will use proprietary/unofficial APIs for their apps
• We can make a Man-In-The-Middle attack to figure out what

endpoints they use
• Personal Recommendations:

• mitmproxy - linux
• Charles - $2.99 on iOS (works on device, can export logs)
• Burp Suite

Personal Example

• McDonald's near my HS home didn’t allow you to mobile order
with McDonalds app until you arrive at location

• Sniff API Calls using Charles
• Reverse-Engineer their ordering protocol, create python wrapper

• Create script to create account, order from home, and use $1 big
mac promotion every day for ~2 weeks
• For some reason, they updated the API...

• How do apps protect against this?

Certificate Pinning

Nowadays, most apps pin their TLS Certificates
• Server sends over certificate
• Logic inside app verifies if certificate is valid
• If not valid, connection terminated!

• Try using Netflix, TikTok, or Snapchat using a VPN! It may not work....

Cracking Certificate Pinning

The In-App check can be
Frida!!!
• Frida is a tool to trace, inspect inputs/outputs, and modify functions while an

app is running

Modifying function returns is extremely powerful
• We can make the certificate check always return true!

“ It’s Greasemonkey for native apps, or, put in more technical terms, it’s a dynamic code
instrumentation toolkit. It lets you inject snippets of JavaScript or your own library into
native apps on Windows, macOS, GNU/Linux, iOS, Android, and QNX. Frida also provides
you with some simple tools built on top of the Frida API. These can be used as-is, tweaked
to your needs, or serve as examples of how to use the API.”

https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/

Types

Certificate pinning can be much harder to crack depending on how
much the application cares:
• Pinning in Java - not that tricky, scripts exist that cover almost

every case
• https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypa

ss-with-frida/
• Native Pinning - if using a standard pinning method (e.g.

libboring.so + libssl.so), articles will exist to assist
• Flutter/Dart Bypass Pinning - tricky to setup

Super in-depth guide →
https://httptoolkit.tech/blog/android-reverse-engineering/

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://httptoolkit.tech/blog/android-reverse-engineering/

Example: Unpinning the Dining
Hall App
Step 1: Identify Pinning is in place

Step 2: Identify what language the application was made in

In my case, the libapp.so hints at this being a flutter
app

Example: Unpinning the Dining
Hall App
Step 3: Identify function to overwrite in Ghidra

• research! https://id.horangi.com/blog/bypass-ssl-pinning-di-flutter-library/

https://id.horangi.com/blog/bypass-ssl-pinning-di-flutter-library/

Example: Frida Script

Step 4: Final script

A typical frida script will be
able to overwrite function
implementation
• Can add custom logic and

logging
Native library functions
injection is not as powerful
• Can only overwrite input

and output values

Success!

Any questions?

