
Week 04
Reverse Engineering II

Nathan

Announcements

-

sigpwny{work_smart_not_hard}

Table of Contents

• Tools/Techniques
• Symbolic Execution
• Instruction Counting Side Channels

• Obfuscation
• Self modifying code
• VM obfuscation

Symbolic Execution

• Solve for inputs to program that achieve a desired output
1. Interpreter steps through program
2. Generates expressions for symbolic variables
3. Solves inputs for a given a set of constraints

• x = ?
• y = x ** 2
• z = y + 1
• Solve for x such that z == 5, and x > 0

Input Constraints

Symbolic Execution Usages

• Reversing without reversing
• Solve for input on stdin (flag) such that the flag checker prints “That

flag is correct!”

• Automated PWN
• Solve for input such that the instruction pointer is overwritten

• Automating ROP gadget discovery
• Find a gadget such that register a = register b after execution

Introducing Angr

• Angr can be used for automating CTF chals

import angr

simgr = angr.Project('./brute').factory.simgr()

simgr.explore(find=lambda s: b'Correct' in s.posix.dumps(1))

print(simgr.found[0].posix.dumps(0))

1.
2.
3.
4.

1. Import angr (install w/ pip3 install angr)
2. Create a simulation manager with the “brute” binary
3. Explore all paths such that “Correct” is in stdout
4. Print the first stdin input which yielded “Correct” on stdout

https://gist.github.com/nathanfarlow/7befd30ee4de5bceaa7ca329b21ef43f

Instruction Counting

• Given a flag as input, count how many instructions are executed
• More instructions executed => flag is closer to being correct
• Depends that the program terminates early if flag character is incorrect
• Depends on order that flag is traversed

 // strequals checks each character in order

 // and stops immediately if characters differ

 if (!strequals(user_input, true_flag)) {

 puts("Correct!");

 } else {

 puts("Wrong flag");

 }

Instruction Counting

• Can use Intel’s Pin
• https://github.com/ChrisTheCoolHut/PinCTF

• Can use valgrind’s exp-bbv or callgrind tool
• valgrind --tool=exp-bbv ./a.out sigpwny{...}

• aaaaaaa => 148862 instructions
• sigpwny => 148962 instructions

https://github.com/ChrisTheCoolHut/PinCTF

Self Modifying Code

• Typically code is only readable and executable
• You can mmap or mprotect a region to make readable, writable,

and executable memory
• Code in this region can modify itself as it runs (see signals)
• Often RE’d using a debugger

mprotect(addr, true_size, PROT_READ | PROT_WRITE | PROT_EXEC)

VM Obfuscation

• Actual program is a virtual machine executing other program
instructions
• Reasoning: lots of good tools exist for reversing x86, but if I invent my

own custom architecture and write an emulator for it, then people can’t
reverse it easily

• VMProtect, ropfuscated, hell

• Ways to reverse include staring at emulator to understand mode
of instruction execution, then writing tools (disassemblers,
decompilers), crying

Go try for yourself!

• Start with Reverse Engineering I if not completed,
then move on to Reverse Engineering II

• See slides for angr auto solver script

• Practice practice practice! Ask for help!

https://ctf.sigpwny.com

https://ctf.sigpwny.com

Next Meetings

Next Thursday: Pwn I
- Go over pwn fundamentals
- How to exploit programs with vulnerabilities

Sunday Seminar: Pwn II (maybe?)
- More practice with pwn
- Other pwn techniques

