
SIGPwny @ UIUC
Intro to Reverse Engineering

● Kaspersky Shenanigans
● Australian Defense Contractor Hack
● Chromebook TPM Weakness
● CSV Injection Blog Post
● PureVPN Logs
● Guide to disabling IME
● Windows DNS Heap Overflows
● OSX Password Exposure
● DoJ Calls for “Responsible Encryption”

News of the Week

https://arstechnica.com/information-technology/2017/10/the-cases-for-and-against-claims-kaspersky-helped-steal-secret-nsa-secrets/
http://www.zdnet.com/article/secret-f-35-p-8-c-130-data-stolen-in-australian-defence-contractor-hack/
https://sites.google.com/a/chromium.org/dev/chromium-os/tpm_firmware_update
http://georgemauer.net/2017/10/07/csv-injection.html
https://betanews.com/2017/10/09/purevpn-logs-fbi/
https://wiki.gentoo.org/wiki/Sakaki%27s_EFI_Install_Guide/Disabling_the_Intel_Management_Engine
https://www.bishopfox.com/blog/2017/10/a-bug-has-no-name-multiple-heap-buffer-overflows-in-the-windows-dns-client/
https://cocoaengineering.com/2017/10/08/reverse-engineering-macos-high-sierra-supplemental-update/
https://www.eff.org/deeplinks/2017/10/deputy-attorney-general-rosensteins-responsible-encryption-demand-bad-and-he

Reverse Engineering

What is RE

Reverse engineering is the process of
understanding a program’s functionality and
behavior though the analysis of code

Tools used in RE

● Disassemblers/Decompilers
○ IDA Pro/Hex Rays
○ Hopper
○ Radare2
○ Binary Ninja

● Debuggers
○ OllyDbg
○ GDB
○ WinDBG

https://binary.ninja/

Compiling

Reversing

Binary Source Code

Difficult
Expensive

Reversing

Binary

Binary

Source Code

Assembly

Difficult
Expensive

Much easier

Approaches to RE

● Static code analysis
○ Read assembly/source code
○ Identify I/O, important functions, and data structures

● Dynamic code analysis
○ Run code through debugger
○ Observe behavior
○ Notice register values, memory values, etc.

EZ stuff
● Before you dive into reversing assembly in

IDA, check the easy stuff first
● Run strings on the binary

○ “version”? Source code is often available online
○ “password” Looking for some sort of authentication
○ strings that give away a service (http, dhcp)
○ other interesting strings…

● Imports and Exports
● Run it and see what happens

Von Neumann Architecture

● Memory
○ Registers
○ RAM

● CPU

Memory Levels

Memory …

Text (binary image of process)

Data (Initialized static vars)

BSS (Uninitialized static vars)

Heap

Stack

OS Kernel Space

● Stack grows up
● Heap grows down

Low Address
0x00000000

High Address
0xFFFFFFFF

Practice

https://microcorruption.com
Exercises We Made

https://microcorruption.com

Introduction to IA-32 (x86)

x86 Architectural Features

● “Intel Architecture, 32-bit”
● Sometimes called i386, x86
● 32 bit version of the x86 architecture

● Registers
● Syntax
● Common Instructions

x86 Outline

Registers

Registers

● Memory that the processor can access much
faster than RAM

● There are a lot of them, but we’ll focus on a
few of the more important ones

● EAX, EBX, ECX, EDX, ESI, EDI can be used
as general storage registers

● “E” stands for extended (32 bits vs 16 bits)
● RAX, RBX, etc. for 64-bit registers

Registers

● Conventional use - not so much in practice
● EAX

○ Accumulator
○ **Return value**

● EBX
○ Base index (arrays)

● ECX
○ Counter (loops)

● EDX
○ Data

Registers

● ESI
○ Source index (memory copying operations)

● EDI
○ Destination index (memory copying operations)

● EBP
○ Base pointer (base of the current stack frame)

● ESP
○ Stack pointer (address of highest element on stack)

Registers

● EIP
○ Instruction Pointer (pointer to next instruction)

● EFLAGS
○ Relevant flags are carry flag (CF), zero flag (ZF),

Sign flag (SF), and overflow flag (OF)
○ Used for conditional statements

● You can’t directly move values into these
registers

Instruction Syntax

Intel Syntax

● Intel
○ Operation Destination, Source
○ Parameter size derived from name of register (rax,

eax, ax, al/ah)
○ No prefixes on immediates or registers
○ mov eax, 0x05

AT&T Syntax

● AT&T (GAS)
○ Operation Source, Destination
○ Suffix for size of operands: q,l,w,b
○ Immediates prefixed with $ and registers prefixed

with %
○ movl $0x05, %eax

Common Instructions

Instructions

● We will be using Intel Syntax
○ destination, source

● Like registers, there are a lot of x86
instructions.
○ We will focus on some of the more common ones

● When starting RE, don’t focus on
memorizing instructions.
○ Look them up as needed

● MOV
○ mov eax, 1 // eax = 1

● ADD, SUB, etc
○ ADD eax, 4 // eax += 4
○ SUB eax, 8 // eax -= 8

● AND, OR, NOT, XOR
○ xor eax, ebx // eax = eax ^ ebx

● SAL, SAR, SHL, SHR
○ shl edx, 4 // edx = edx * 16

Instructions

Instructions

● LEA
○ “Load Effective Address”
○ Often used to load an absolute address from a

relative offset in a general purpose register
○ Good Stackoverflow descriptions of LEA

● PUSH, POP
○ Stack Manipulation

● CALL, RET
● Stack set up and teardown per C calling convention

https://stackoverflow.com/questions/1658294/whats-the-purpose-of-the-lea-instruction

Instructions

● CMP
○ Subtracts operands but discards result
○ Sets flags

● TEST
○ ANDs operands but discards result
○ Sets flags

● JMP/Jxx
○ JNE, JAE, etc

Memory addressing

● mov eax, [ebx+4*ecx]
○ eax = *(ebx + 4*ecx)
○ [] dereferences an address

The Stack and C Calling
Convention

int func(param1, param2, param3)
{ int var1, var2, var3; }

C Call Stack

C Call Stack

Input: “Hello”

C Call Stack
Input: “AAAAAAAAAAAAAAAA\x08\x35\xC0\x80”

A char = 1 Byte
Hex (“\x0”) = 4 Bits = ½ Byte
2 Hex (“\x00”) = 1 Byte

Endianness

● Intel x86 uses little endian
○ “Little end” (least significant byte) goes into lower

memory address
● Bytes are in reverse order in little endian

○ Address 0x0A0B0C0D looks like 0x0D0C0B0A in
memory.

Some IDA Commands

● n // rename function, variable, register
● h // toggle between hex and decimal
● alt + t // search for text
● spacebar // toggle between views
● x // cross references to function, variable
● ctrl - left click // highlight multiple nodes
● right click -> group nodes // groups nodes
● y // change type (int, char) of variable
● alt-Q // list of structures

GDB commands

● gdb <program> // runs program in gdb
● set disassembly-flavor intel
● b <address/function> // sets breakpoint
● r // run (restart) program
● p $<register> // prints register value
● n // next instruction
● s // step into function
● si // step 1 assembly instruction
● c // continue executing
● x <address> // examine memory

GDB stuff

● "set follow-fork-mode child"
● gdb <program> // opens and loads program into gdb

○ file <program> // loads program into gdb
○ r <params> // runs the loaded program with params as

argument
○ r < <file.txt> // runs the program with contents of file.txt as

parameter
○ \xCC // Debugger trap, when executed in gdb,

program should exit with SIGTRAP. Use to test if you get code
execution.

○ b <function name or line number> // set breakpoint

Some radare2 commands
● r2 <program> // runs in read mode
● r2 -A <program> // run and analyze funcs
● r2 -Aw <program> // analyze and write-mode

● s <address> // set selector to address
● pd <size> // print disassembly at selector
● pdr // print disassembled function (if -A)
● aa // analyze functions and bbs
● ag $$ > a.dot // creates basic block graph
● agc $$ > a.dot // creates call graph
● $$ = at this location

Some radare2 debugger commands
● db @ <address/function> // sets breakpoint
● do // reopen program in debugger
● dr // prints all register values
● dr?<register> // prints register value
● dr eax=0 // set register eax=0
● ds // step 1 assembly instruction
● dc // continue executing

radare2 commands
● Cheatsheet:
https://github.com/pwntester/cheatsheets/blob/
master/radare2.md

https://github.com/pwntester/cheatsheets/blob/master/radare2.md
https://github.com/pwntester/cheatsheets/blob/master/radare2.md

Exercises

● https://github.com/sigpwny/RE_Labs

● Combination

● CD_Key

● Mr.E

https://github.com/sigpwny/RE_Labs

Combination

This executable is like a lock. There are
multiple stages that need to be unlocked one at
a time. Dynamic analysis is a must!

You downloaded Winrar, but it asks for a CD
key before it will install. Ha. It should be fairly
easy to crack the CD key validator on this. You
might even go so far as to create a keygen...

CD_key

Mr.E

Your name is Ben Bitdiddle. You are an ECE student at
UIUC. Your GPA is 1.5 due to constantly ing
your group projects with your horrible suggestions. You
need to raise your GPA to at least a 2.0 by the end of
the semester to graduate, but you don’t know how.
Your classmate Alyssa P. Hacker feels bad for you.
She hacks the school network and brings you a flash
drive containing a single file, “Mr.E”, telling you that it is
your ticket to graduation. What does this file do? How
can this help you? Do you really trust her? Only one
way to find out…

So you want to learn more..

● Books
○ Reversing: Secrets of Reverse Engineering
○ The IDA Pro Book
○ Practical Reverse Engineering
○ Practical Malware Analysis

● OpenSecurityTraining
○ Intro classes on x86, ARM, Reverse Engineering

and more!
● CTF challenges

http://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817
http://www.amazon.com/The-IDA-Pro-Book-Disassembler/dp/1593272898/
http://www.amazon.com/Practical-Reverse-Engineering-Reversing-Obfuscation/dp/1118787315/ref=sr_1_1?ie=UTF8&qid=1445469549&sr=8-1&keywords=practical+reverse+engineering
http://www.amazon.com/Practical-Malware-Analysis-Hands--Dissecting/dp/1593272901/ref=sr_1_2?ie=UTF8&qid=1445469549&sr=8-2&keywords=practical+reverse+engineering
http://www.opensecuritytraining.info/Training.html

Troubleshooting the Challenges

● Turn off ASLR:
as root: echo 0 > /proc/sys/kernel/randomize_va_space

This only persists until next reboot

● If you get a Makefile compile error about missing
libraries (probably if you are using a 64-bit machine)
install g++-multilib
sudo apt-get install g++-multilib

