gég SIGPwny

FA2025 o 2025-10-27

Side-Channel Attacks

Jake and Minh

Overview

- What is Side-Channels Analysis (SCA)?
- Timing Side-Channels
- Power analysis

- Simple Power Analysis (SPA)

- Differential Power Analysis (DPA)
- Correlation Power Analysis (CPA)

- Electro-magnetic

0

Side-Channel Analysis

— Side-Channel: Indirect source of information about a system
— SCA: Leaking private information by side-channels
— Some side-channels:

— Timing

— Power use

— EM/RF emissions

— General purpose computing:
— Meltdown/Spectre target cache side-channels
— Timing analysis against naive crypto implementations

— Embedded devices may be exposed to invasive physical threats

7R =

Side-Channel Analysis

- When a processor is executing instructions, it draws power

- This power draw is related to the operations it is performing

- Further, the power draw is related to the operands (i.e. values) being
manipulated

- Additionally, there will be data-dependent EM/RF emissions

Power Side-Channels

0

RSA Primer

- Alice wants to send a message to Bob that only Bob can decrypt

- Bob distributes a public key (e, n) and retains a secret key d

- Alice pads her secret message to produce msuch that m < n

- Alice produces the ciphertext c m*® (mod n)

- Bob can recover the message c¢ = (me)d =m (mod n)

- Observe that decryption involves usmg the secret key d as an
exponent

I

Exponentiation by Squaring

- A simple algorithm to compute r = x" is as follows:
r=1
while n > 0:

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° |
r=1 X «— 2
while n > 0: n «— 5

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° |
r=1 X «— 2
while n > ©: n «— 5

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° |
r=1 X «— 2
while n > 0: n «— 5

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° |
r=1 X «— 2
while n > 0: n «— 5

if n 1s odd:
r=r * x (2)
= X ¥ x

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 2
while n > 0: n «— 5

if n 1s odd:
r=r * x (2)
= X ¥ x

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 2
while n > 0: n «— 5

if n 1s odd:

>
1
>
N~
N~
N

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > ©O: n «— 5

if n 1s odd:

>
1
>
N~
N~
N

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > ©O: n «— 5

if n 1s odd:

r=rpr % x
X = X ¥ X
n=mn// 2 (2)

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > 0: n «— 2

if n 1s odd:

r=rpr % x
X = X ¥ X
n=mn}//2 (2)

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > ©: n «— 2

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > 0: n «— 2

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 4
while n > 0: n «— 2

if n 1s odd:

>
1
>
N~
N~
N

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0: n «— 2

if n 1s odd:

>
1
>
N~
N~
N

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0: n «— 2

if n 1s odd:

r=rpr % x
X = X ¥ X
n=n// 2 (1)

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0: n «— 1

if n 1s odd:

r=rpr % x
X = X ¥ X
n=mn}// 2 (1)

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0O: n «— 1

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0: n «— 1

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2° r o« 2
r=1 X «— 16
while n > 0: n «— 1

if n 1s odd:
r=r * x (32)
X = X * X

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 16
while n > 0: n «— 1

if n 1s odd:
r=r * x (32)
= X ¥ x

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 16
while n > 0: n «— 1

if n 1s odd:
r=rnr *x

X = X * x (256)

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 256
while n > 0: n «— 1

if n 1s odd:
r=rnr *x

X = X * x (256)

n // 2

-
1

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 256
while n > 0: n «— 1

if n 1s odd:

r=rpr * x
X = X * X
n=mn// 2 (0)

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 256
while n > 0: n «— 0

if n 1s odd:

r=rpr * x
X = X * X
n=mn}// 2 (9)

0

Exponentiation by Squaring

- Computing 2° r « 32
r=1 X «— 256
while n > ©: n «— 0

if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

0

Exponentiation by Squaring

- Computing 2°

r=1

while n > ©:
if n 1s odd:

r=rpr * x
X = X * X
n=n}// 2

- Wehaver = 32 = 2° as
desired

r «— 32
X «— 256
n «— ©

0

Exponentiation by Squaring

- The algorithm is correct, but it has a serious issue
- Recall that the decryption key d is Bob's exponent
- The algorithm performs an extra step for each 1 bit in the exponent:

if n 1s odd:

r=rpr * x

- If we could watch the execution path over time, we could see if
each bit of the keyisa @ or 1

I

Simple Power Analysis

- Well, different instructions may have different power characteristics

- Simple Power Analysis (SPA) refers to visually inspecting a power
trace to leak secrets

- For exponentiation by squaring, the n is odd condition
corresponds with an additional multiply step

while n > 0:
if n is odd:
r=r * x (multiply)
X = X * x (square)
n=n}// 2

Note: the square and multiply steps are
reordered in this example

Simple Power Analysis

- SPA is great when your power traces have obvious features

- However, hardening against these obvious features isn't very
difficult

- A constant-time AES implementation is unlikely to reveal key
material visibly in the power trace

0

Advanced Power Analysis

- Instead, we can gather many power traces of encryption/decryption
over different inputs

- Each trace on its own isn't useful

- However, let's assume that the device's power consumption

depends on the data being processed
- hamming weight model (more 1 bits, more power)
- hamming distance (more bits flipped, more power)

- It then follows that some function of the key material and input data
Is correlated with power consumption

I

Advanced Power Analysis

- For example, let's say encryption takes your input byte a and a
secret byte b to compute some intermediate value c
- l.e.c=a”™b
- Hamming weight model would suggest that more bits being set in ¢

would draw more power
- e.g. ¢ = oxffis heavierthan ¢ = 0x00 so it draws more power

- Therefore, when all bits of a and b match, we would have the lowest
power draw In setting c

5

Differential Power Analysis

- Based on our understanding of how processors consume power
when performing operations, each bit involved in a computation
should contribute slightly to the power trace

- Therefore, if we have two idealized (non-noisy and aligned) power
traces only differing in a single bit, we would expect a spike at

some point in the differential
- i.e. the power traces are equal except at one point due that bit differing
- Averaging many traces with uncorrelated noise in other positions

will approximate this ideal
1

differential

Differential Power Analysis

- Differential Power Analysis (Kocher, et al.) is the first work to take
advantage of these observations

- It focuses on recovering an intermediate DES key

- Hypothesizes that each value for the key may be taken

- Using the key guess and the ciphertext, we compute some
iIntermediate value that influences the power trace

- Separate the traces into buckets for each bit of the intermediate

1 0
.6
AVG(.) - AVG() = | differential

Correlation Power Analysis

- Benefitted from the earlier work of DPA and further research

- Introduces a more advanced statistical technique

- Instead of using single bit differences, we can use a correlation
coefficient with a leakage model

- Introduces the more advanced hamming distance model to model
power draw from bits transitioning from one value to another

- Additionally, the method overcomes some issues observed in DPA
- DPA assumes wrong guesses give indistinguishable buckets (resulting in
false detections)
- DPA often requires many more samples to converge

I

Power Analysis Recap

Simple Power Analysis
- Use when you have clear features in your power trace
Differential Power Analysis

- First sophisticated statistical attack on power traces
- Makes guesses for key values and buckets traces accordingly

Correlation Power Analysis

- More useful in practice
- Uses a more advanced statistical method to overcome limitations of

DPA
R

How to perform SCA?

0

Load that can be a generato
0Q

Shunt resistor
0Q

Measure

ChipWhisperer (CW)

- The ChipWhisperer is a platform for carrying out hardware attacks
- Anything from side-channel analysis to voltage glitching

- Platform meaning:
- Attacker hardware
- Target instrumentation
- Software library

ChipWhisperer Husky il
@ ADC @ Armed @ status S :
@ Glitch @ Capturing @ Error &

JARRdsiymdiyd

10}22UU0) uid-0Z

=
)
o
I
e
=
o
=
=
D
=
=

O You9/48661)

e
WA
|
o
A,
o =
4 I ®)
i3 B «
m
i il
i
k | O
| 5
fifl o
. 3
[| ©v i
5
‘/ s i,

CW-Nano ($60) CW-Lite ($370) CW-Husky ($640)

Oscilloscope

- We can also use an oscilloscope to measure and capture power
traces!

- BEEE

> |
)
)
=)
=)
)
)
~)

. IA0ARAAY

Next Meetings

2025-11-03 « Next Monday

- Fault Injection Lab with
ChipWhisperer Nano!

- We'll be explaining fault
iInjection as well as letting you
use a CW-Nano to perform a
voltage glitching attack!

°

R
(1
Pr
@

==
[

5t
)
(]

rer®

rer

rer
ipWhispé
chipWhieE.

. chipwl
" ChipWhispe
http:/ /s . chipwhispe!
. @
ChipWhlspe
| netp: /s chipuhisperer-c

_hipWhisperer® ChipWhisperer®
http://www.chipwhisperer . com r.com

http://waw.chipwhispere

i
- __

Meeting content can be found at
sigpwny.com/meetings.

c%g SIGPwny

