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Overview
- What is Side-Channels Analysis (SCA)?
- Timing Side-Channels
- Power analysis

- Simple Power Analysis (SPA)
- Differential Power Analysis (DPA)
- Correlation Power Analysis (CPA)

- Electro-magnetic



Side-Channel Analysis
– Side-Channel: Indirect source of information about a system
– SCA: Leaking private information by side-channels
– Some side-channels:

– Timing
– Power use
– EM/RF emissions

– General purpose computing:
– Meltdown/Spectre target cache side-channels
– Timing analysis against naïve crypto implementations

– Embedded devices may be exposed to invasive physical threats



Side-Channel Analysis
- When a processor is executing instructions, it draws power
- This power draw is related to the operations it is performing
- Further, the power draw is related to the operands (i.e. values) being 

manipulated
- Additionally, there will be data-dependent EM/RF emissions



Power Side-Channels



RSA Primer
- Alice wants to send a message to Bob that only Bob can decrypt
- Bob distributes a public key (e, n) and retains a secret key d
- Alice pads her secret message to produce m such that m < n
- Alice produces the ciphertext c ≡ me (mod n)
- Bob can recover the message cd ≡ (me)d ≡ m (mod n)
- Observe that decryption involves using the secret key d as an 

exponent



Exponentiation by Squaring
- A simple algorithm to compute r = xn is as follows:
r = 1

while n > 0:

if n is odd:

r = r * x

x = x * x

n = n // 2
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Exponentiation by Squaring
- Computing 25

r = 1

while n > 0:

if n is odd:

r = r * x

x = x * x

n = n // 2

- We have r = 32 = 25, as 
desired

r ← 32

x ← 256

n ← 0



Exponentiation by Squaring
- The algorithm is correct, but it has a serious issue
- Recall that the decryption key d is Bob's exponent
- The algorithm performs an extra step for each 1 bit in the exponent:

if n is odd:

r = r * x

- If we could watch the execution path over time, we could see if 
each bit of the key is a 0 or 1



Simple Power Analysis
- Well, different instructions may have different power characteristics
- Simple Power Analysis (SPA) refers to visually inspecting a power 

trace to leak secrets
- For exponentiation by squaring, the n is odd condition 

corresponds with an additional multiply step
while n > 0:

if n is odd:

r = r * x (multiply)

x = x * x (square)

n = n // 2
Note: the square and multiply steps are 
reordered in this example



Simple Power Analysis
- SPA is great when your power traces have obvious features
- However, hardening against these obvious features isn't very 

difficult
- A constant-time AES implementation is unlikely to reveal key 

material visibly in the power trace



Advanced Power Analysis
- Instead, we can gather many power traces of encryption/decryption 

over different inputs
- Each trace on its own isn't useful
- However, let's assume that the device's power consumption 

depends on the data being processed
- hamming weight model (more 1 bits, more power)
- hamming distance (more bits flipped, more power)

- It then follows that some function of the key material and input data 
is correlated with power consumption



Advanced Power Analysis
- For example, let's say encryption takes your input byte a and a 

secret byte b to compute some intermediate value c
- i.e. c = a ^ b

- Hamming weight model would suggest that more bits being set in c 
would draw more power
- e.g. c = 0xff is heavier than c = 0x00 so it draws more power

- Therefore, when all bits of a and b match, we would have the lowest 
power draw in setting c



Differential Power Analysis
- Based on our understanding of how processors consume power 

when performing operations, each bit involved in a computation 
should contribute slightly to the power trace

- Therefore, if we have two idealized (non-noisy and aligned) power 
traces only differing in a single bit, we would expect a spike at 
some point in the differential
- i.e. the power traces are equal except at one point due that bit differing

- Averaging many traces with uncorrelated noise in other positions 
will approximate this ideal

0

1

differential



Differential Power Analysis
- Differential Power Analysis (Kocher, et al.) is the first work to take 

advantage of these observations
- It focuses on recovering an intermediate DES key
- Hypothesizes that each value for the key may be taken
- Using the key guess and the ciphertext, we compute some 

intermediate value that influences the power trace
- Separate the traces into buckets for each bit of the intermediate

0

differential

1

AVG(          )- AVG(         )  = 

AVG
0

AVG
1



Correlation Power Analysis
- Benefitted from the earlier work of DPA and further research
- Introduces a more advanced statistical technique
- Instead of using single bit differences, we can use a correlation 

coefficient with a leakage model
- Introduces the more advanced hamming distance model to model 

power draw from bits transitioning from one value to another
- Additionally, the method overcomes some issues observed in DPA

- DPA assumes wrong guesses give indistinguishable buckets (resulting in 
false detections)

- DPA often requires many more samples to converge



Power Analysis Recap
Simple Power Analysis
- Use when you have clear features in your power trace
Differential Power Analysis
- First sophisticated statistical attack on power traces
- Makes guesses for key values and buckets traces accordingly
Correlation Power Analysis
- More useful in practice
- Uses a more advanced statistical method to overcome limitations of 

DPA



How to perform SCA?





- The ChipWhisperer is a platform for carrying out hardware attacks
- Anything from side-channel analysis to voltage glitching

- Platform meaning:
- Attacker hardware
- Target instrumentation
- Software library

ChipWhisperer (CW)

CW-Nano ($60) CW-Lite ($370) CW-Husky ($640)



Oscilloscope
- We can also use an oscilloscope to measure and capture power 

traces!



Next Meetings
2025-11-03 • Next Monday
- Fault Injection Lab with 

ChipWhisperer Nano!
- We'll be explaining fault 

injection as well as letting you 
use a CW-Nano to perform a 
voltage glitching attack!



Meeting content can be found at 
sigpwny.com/meetings.


