
Embedded PWN
FA2025 • 2025-10-13

Adarsh and Swetha

Embedded

Meeting content can be found at
sigpwny.com/meetings.

What is PWN (generally)?
- More descriptive term: binary exploitation

- Exploits that abuse the mechanisms behind how compiled code is
executed
- Dealing with what the CPU actually sees and executes on or near the

hardware level

- Most modern weaponized/valuable exploits fall under this category

PWN in an Embedded Context
- Dealing with lightweight OS (RTOS, Zephyr, etc.) rather than

full-featured OS (Linux, Windows, etc.)

- Similar attacks to “regular” PWN, but dealing with different
memory layout

- Utilizing communication protocols (e.g. UART, SPI, I2C, etc.)
to get firmware dumps

Memory in Embedded Systems
● Diagram not applicable to all

MCUs or embedded systems

● Just for highlighting main
sections of embedded system
memory

● Main differences from computer
memory: flash memory,
EEPROM, SRAM

Memory in Embedded Systems

Attribute Computer Memory Embedded System Memory

Volatile Memory DRAM SRAM

Non-volatile/persistent
storage

SSD/HDD Flash memory & EEPROM

Bootloader BIOS/UEFI ROM/Flash

● EEPROM = electrically erasable programmable read-only memory

JTAG and ICSP

- JTAG - low-level communication with MCU for debugging or
programing
- TDI/TDO (Test Data In/Out) - send data in/out of a chip
- TCK - clock for data
- TMS (Test Mode Select) - directs state of chip

- ICSP - in-circuit serial programming
- Total and partial JTAG locks

- Limit debugging and memory access of JTAG interface
- Depending on system, possible to attack bootloader, use gadget to read

from flash memory, extract individual words from flash, read SRAM, etc
- Even on embedded systems, CPU complexity makes exploitable corner

cases more likely

Attacks: Case Studies
Examples taken from Microcontroller Exploits by Travis Goodspeed
● Buffer overflow - Dish network smart card (Ch 6)
● SPI bus sniffing - STM32F217 DFU (Ch 2)
● UART access - Card reader (Ch 12)

Buffer Overflow: Dish Network Smart Card
● ST16CF54 chip used

● Took advantage of SRAM
ghosting property

● Ghosting - copying writes to
duplicated chunks of memory

● We’re focusing on the SRAM
ghosting

Buffer Overflow: Dish Network Smart Card
● Write to 0x0220 is the same as

a write to 0x0020 or a write to
0x0420

● Effectively overflow the buffer at
0x019C to write into SRAM
Ghost 1

● Ghosting property lets us
corrupt actual SRAM

0x0400 SRAM Ghost 2

0x0200 SRAM Ghost 1

0x019C Target Buffer (in SRAM)

0x0020 SRAM

SPI Bus Sniffing: STM32F217 DFU
● JTAG lets us write an application into unused SRAM

○ Write a program that transmits packets of flash memory via SPI bus

● Executing our program
○ DFU bootloader executes from ROM, and we can set the address pointer
○ We set the address pointer to our application we wrote (using JTAG)
○ Upon exiting the bootloader, execution jumps to the application we wrote

● Reading the data
○ Can read from the SPI bus using a logic analyzer
○ Appending the packets we’ve read gives us the firmware image

UART Access: HID RW400 Card Reader

- Each memory page has CP (Code Protection), WRT (Write Protection),
EBT (Table Read Protection) bits
- Bits are cleared to enable protections
- To set bits, you have to erase page

- Meriac (2010) notices that CP and WRT bits are cleared but EBT bits
aren’t
- Why aren’t all bits cleared?

- EBT bit allows entire firmware to be dumped by code running on a
page

- Exploit: erase page, disable all protections, write shellcode to dump
firmware through UART
- Shellcode written by bitbanging ICSP through FTDI GPIO pins

Defenses & Protections in an Embedded Context
● Privilege levels

○ Most MCUs have at least 2 privilege modes - along the lines
of “privileged” and “unprivileged” mode

○ ARM - “handler” mode and changeable privileged or
unprivileged “thread”mode

● MPU - memory protection unit
○ Enforces privilege levels on regions of memory
○ Can raise memory management faults when violations occur

● Bus-level protection
○ Privilege levels for master and slave signals
○ ARM TrustZone-M → only “secure” masters can access

secure regions of memory

Discussion: Potential Exploits on our MCU
M0 Cortex (board being used for eCTF 2026!)
Datasheet: MSPM0L222x, MSPM0L122x Mixed-Signal Microcontrollers
datasheet (Rev. A)

What info can you get from the datasheet that would be helpful
for exploitation?

https://www.ti.com/lit/ds/symlink/mspm0l2228.pdf?ts=1760199996059
https://www.ti.com/lit/ds/symlink/mspm0l2228.pdf?ts=1760199996059

Next Meetings
2025-10-18 • Next Monday
- Attacking “Secure” Protocols

