
Secure Protocol Design
FA2025 • 2025-10-06

Nikhil Date

Embedded

Obligatory Alice and Bob Slide

Security Properties
- CIA Triad: Confidentiality, Integrity, Availability
- We will mostly be focusing on confidentiality and availability
- Confidentiality: can Mallory read secrets exchanged between Alice

and Bob
- Integrity: can Mallory tamper with messages sent between Alice and

Bob?
- Can you think of a system you have used where these properties

are important?

Threat Models
- Passive attacker (“Eve”)
- Active attacker/man-in-the-middle (“Mallory”)
- Parties themselves are untrusted

Cryptography
- Mathematical and algorithmic techniques to achieve provable

security
- Modern methodology of security

- Define what security means
- State assumptions
- Define cryptographic construction
- Prove that construction satisfies security definition

- Today, we will be looking at three topics within cryptography:
symmetric cryptography, asymmetric cryptography, and hash
functions

Symmetric Cryptography
- Alice and Bob share a secret key (we won’t worry about how this

happened, perhaps they met in advance)
- Can they achieve confidentiality and integrity given this?

- Yes!
- Confidentiality: Symmetric Encryption
- Integrity: Message Authentication Codes

Symmetric Encryption
- Same key used to encrypt and decrypt
- Enc(k, m) -> c
- Dec(k, c) -> m
- Security property is “CPA” security

- I choose a secret key and let you obtain encryptions of any messages of
your choice

- Now I let you pick two messages m_0 and m_1
- I randomly choose one of these messages to encrypt and give you the

ciphertext
- You have no better way than brute force of guessing which message I

encrypted
- This implies that encryption must be randomized! Why?

Block/Stream Ciphers
- In practice, we typically use block ciphers or stream ciphers to

achieve symmetric encryption of messages of arbitrary length
- AES (with different modes)
- ChaCha20

- Block ciphers need “modes” to encrypt long messages
- Some modes are not secure (like ECB)!

Message Authentication Codes
- tag(k, m) -> t
- check(k, m, t) -> {good, bad}
- We can use secret key to assign a “tag” to a message
- Other party can check the tag if they have the key
- If message is tampered with, tag won’t match
- Security property: “unforgeability”

- I let you obtain tags for as many messages as you want of your choice
- It’s infeasible for you to forge a tag for a message you didn’t already ask me

for a tag

Authenticated Encryption
- If we “correctly” combine symmetric encryption and MAC, we get

“authenticated encryption”
- This basically means that the adversary can do nothing

- Can’t read messages
- Can’t tamper with messages

- “Secure Channel”
- This is usually what we want to use when we’re dealing with

symmetric cryptography
- There also exist specialized “authenticated ciphers” that combine

confidentiality + integrity like AES-GCM, Ascon, etc.

Asymmetric Cryptography
- We assume initially that Alice and Bob have a shared secret

- How did they get this secret?
- What if they have no way to meet in advance?
- What if we want multiple people to securely send messages to Alice?

- We can use asymmetric cryptography
- Each party holds a public key pk and a secret key sk

Asymmetric Encryption
- Enc(pk, m) -> c (anybody can encrypt)
- Dec(sk, c) -> m (only holder of secret key can decrypt)
- Security definition is similar to symmetric encryption
- Can you think of a system you use where these are needed?

Digital Signatures
- Asymmetric equivalent of message authentication codes
- Sign(sk, m) -> sigma
- Verify(pk, m, sigma) -> {0, 1}
- Only the holder of the secret key can sign messages, but anyone

can verify
- Can you think of a system you use where they are needed?
- Can this be combined with asymmetric encryption?

- How?

Asymmetric Crpytography Algorithms
- RSA
- Elliptic Curves

- Generally best practice to use this
- Usually require longer key lengths and are slower

Key Exchange
- At a high level, use asymmetric cryptography to establish a shared

symmetric key
- One option

- Encrypt symmetric key and send to other party
- Another option is Diffie-Hellman key exchange

Diffie-Hellman

Man-in-the-middle attacks
-

Certificates
- Signed public key

Cryptographic Hash Functions
- H(m) = x
- Important: no secret keys!
- Can roughly think of it as a “pseudorandom” function
- Properties

- Preimage resistance: given H(m), can’t figure out m
- Collision resistance: can’t find m_1, m_2 such that H(m_1) = H(m_2)

- Uses
- “Commitment scheme”

- I pick a secret x
- commitment = H(x || r)
- later reveal secret (“open”) by sending x and r
- Hiding: commitment doesn’t reveal x
- Binding: can’t claim to have chosen a different secret

More Complex Attacks
- Replay attacks

- Might be able to replay encrypted + authenticated message
- What if keys are compromised?

- Is everything lost?
- Can we finely scope keys to limit damage?
- Forward Secrecy: past communications are safe even if keys are

compromised
- Ephemeral Diffie-Hellman uses “long-term secret” to generate fresh public keys for

each session

eCTF 2025 Practice

Next Meetings
2025-10-13 • Next Monday
- Embedded PWN and Software Security

Meeting content can be found at
sigpwny.com/meetings.

