
Embedded 102:
Microcontroller Programming

FA2025 • 2025-09-22

Nikhil and Krishnan

Embedded

Nikhil Date

- Admin
- Computer Science
- Fact: I lived in Columbus this

summer

Krishnan Shankar

- SIGPwny Helper
- Computer Engineering ‘28
- Fun fact: I’m from the Washington,

D.C Area

Meeting content can be found at
sigpwny.com/meetings.

The Basics

Recall: Embedded Systems

#include “stdio.h”

int main() {

int x = 1;

int y = 2;

int z = x + y;

printf(“z = %d”, z);

 return 0;

}

1. The C programming language

- Compiled “high-level”
programming language

- Created in the 70s by Dennis
Ritchie while developing Unix

- Widely used for low-level
programming

- Offers easy access to
memory and hardware
peripherals

2. Compilation
- The C program gets turned into assembly code
- Which assembly language?

- You can pick!
- e.g., you can compile your code “for” x86_64 (i386), ARM (aarch64), etc.

2. Compilation
#include “stdio.h”

int main() {

int x = 1;

int y = 2;

int z = x + y;

printf(“z = %d”, z);

 return 0;

}

3. Bitstream
- Based on the ISA (instruction set architecture), every assembly

instruction “becomes” a specific binary string
- This, along with some other things, forms an object file
- This object file, along with some other things, forms a bitstream
- This bitstream gets sent to the MCU over USB (using UART)

Flashing your FallCTF Badges!

The Overview
- We need a toolchain to compile

our C code
(xtensa-esp-elf-*)

- We need a build tool to create
an ESP32-compatible
application (CMake, Ninja)

- We need a flashing tool to copy
that application to Flash
Memory (esptool.py)

Source: ESP-IDF Programming Guide

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html#software

The Overview
- We need a toolchain to compile

our C code
(xtensa-esp-elf-*)

- We need a build tool to create
an ESP32-compatible
application (CMake, Ninja)

- We need a flashing tool to copy
that application to Flash
Memory (esptool.py)

- Espressif’s IDF handles all of
these! Source: ESP-IDF Programming Guide

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html#software

- Espressif IoT Development Framework
- https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-

started/index.html
- Simplest method:

- Install the “ESP-IDF” VSCode Extension
- Find the ESP-IDF tab on the left
- Click “Configure ESP-IDF Extension”
- Use “GitHub” download server
- Click “Install”

Installing ESP IDF

https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-started/index.html

Find your ESP32’s Serial Port
- Plug in the ESP32
- On Windows:

- Open “Device Manager”
- Find the port that’s newly added
- Should be COM#

- On Mac/Linux:
- /dev/ttyUSB0 or /dev/ttyACM0
- Check which one gets created when

you plug in the ESP32 (ls /dev)

- Replace “PORT” in any future
commands with this value

Source: ESP-IDF Programming Guide

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/establish-serial-connection.html#check-port-on-windows

Download an Example Project
- They’re actually already downloaded on your PC! (If you installed

ESP IDF correctly)
- Use VSCode extension to get the hello_world project

Flash your FallCTF Badges

- cd project-directory
- idf.py set-target esp32s2
- idf.py menuconfig

- Component config > ESP System Settings > Channel for console output
- Change from “Default: UART0” to “USB CDC”

- Switch the ESP to bootloader mode (aka download mode)
- Press and hold “B” on the front (boot button)
- Press and release “SW4” on the back (reset button)
- Release “B”

- idf.py -p PORT -b 115200 flash
- idf.py -p PORT -b 115200 monitor

Embedded Software Stack

An Aside: RTOS vs Bare Metal Boot
Process

Stage 1 Bootloader

Stage 2 Bootloader
(MicroPython)

Python Program
(The Badge)

Stage 1 Bootloader

Stage 2 Bootloader
(FreeRTOS)

Our C Program

Stage 1 Bootloader

Stage 2 Bootloader
(Our C Program!)

MicroPython ESP IDF RTOS Bare Metal

The Boot Process, in words

- Stage 1 Bootloader
- Hardcoded, cannot be modified
- Once finished, it jumps to a fixed memory address (0x1000)

- Stage 2 Bootloader
- Is flashed to address 0x1000
- Can be anything we want, but is generally FreeRTOS

- FreeRTOS
- Reads address 0x8000 to view a list of all flashed images
- Jumps to address 0x10000 to run the first user program

- The User Program
- Is flashed to address 0x10000

Source: MicroPython (ESP32 S2)

https://micropython.org/download/ESP32_GENERIC_S2/

The Boot Process, in words

- Stage 1 Bootloader
- Hardcoded, cannot be modified
- Once finished, it jumps to a fixed memory address (0x1000)

- Stage 2 Bootloader
- Is flashed to address 0x1000
- Can be anything we want, but is generally FreeRTOS

- FreeRTOS
- Reads address 0x8000 to view a list of all flashed images
- Jumps to address 0x10000 to run the first user program

- The User Program
- Is flashed to address 0x10000

So How Do We Run Bare Metal?

- Write a C Program
- To run bare metal, it should have a call_start_cpu0 function

- Write a custom linker script
- This tells the compiler where to put certain parts of main.c
- For example, code in IRAM and variables in DRAM

- Write a Makefile
- This will compile your code to main.elf using the linker script

- Convert the ELF file to a binary image using esptool
- Flash the binary image at 0x1000 using esptool

The Bare Metal C Program
#include <string.h>

extern unsigned int _sbss, _ebss, _sidata, _sdata, _edata;

void __attribute__((noreturn)) call_start_cpu0() {

 memset(&_sbss, 0, (&_ebss - &_sbss) * sizeof(_sbss));

 memmove(&_sdata, &_sidata, (&_edata - &_sdata) * sizeof(_sdata));

 main();

}

static volatile int a = 0;

int main(void) {

 while (1) {

 ++a;

 }

 return 0;

}

Source: Vivonomicon

https://vivonomicon.com/2019/03/30/getting-started-with-bare-metal-esp32-programming/

Compile and Flash
- cd project-directory

- make

- esptool.py -c esp32s2 elf2image --flash_mode="dio"
--flash_freq "40m" --flash_size "4MB" -o main.bin main.elf

- Switch the ESP to bootloader mode

- esptool.py -c esp32s2 -p PORT -b 115200 --before
default_reset -a hard_reset write_flash -z --flash_mode dio
--flash_freq 40m --flash_size detect 0x1000 main.bin

Then What?
- The program is flashed, and esptool already rebooted it for us
- However, we won’t see anything when we use idf.py monitor

- Or even tools like screen, picocom, minicom, etc.

- Why?

Drivers
- To do anything useful, we need drivers
- To access the serial port, the device needs to communicate using

UART (Universal Asynchronous Receiver-Transmitter)
- This is difficult (and complex)!

Source: K. Levchenko (ECE 391)

https://courses.grainger.illinois.edu/ece391/fa2025/secure/lec/Device-IO-student.pdf

Next Meetings
2025-09-29 • Next Monday
- Embedded 103: Breadboarding and Hardware

Meeting content can be found at
sigpwny.com/meetings.

