gég SIGPwny

FA2025 o 2025-09-22

Embedded 102;
Microcontroller Programming

Nikhil and Krishnan

Nikhil Date

- Admin
- Computer Science

- Fact: | lived in Columbus this
summer

Krishnan Shankar

- SIGPwny Helper

- Computer Engineering ‘28

- Fun fact: I'm from the Washington,
D.C Area

Meeting content can be found at
sigpwny.com/meetings.

c%g SIGPwny

The Basics

0

Recall: Embedded Systems

External Physical
circuits devices

signals

1. The C programming language

- Compiled “high-level”
programming language

- Created in the 70s by Dennis
Ritchie while developing Unix

- Widely used for low-level
programming

- Offers easy access to
memory and hardware
peripherals

#include “stdio.h”

int main () {
int x = 1;
int y = 2;

int z = x + y;

printf (Yz = %d”,

return 0;

0

2. Compilation

- The C program gets turned into assembly code

- Which assembly language?
- You can pick!
- e.g., you can compile your code “for” x86_64 (i386), ARM (aarch64), etc.

5

2. Compilation

#include “stdio.h”
push {ri11, 1r
: : 3 mov g s B
int main () | A sub
. mov
int x = 1;

str

int y = 2 3 mov

s str

mov
str
ldr
printf (Yz = sd”, z); 5 bt
14 adc

. str

return 0; 16 ldr
ldr

int z = x + y;

add
bl
ldr
mov
pop
bx

3. Bitstream

- Based on the ISA (instruction set architecture), every assembly
iInstruction “becomes” a specific binary string

- This, along with some other things, forms an object file
- This object file, along with some other things, forms a bitstream
- This bitstream gets sent to the MCU over USB (using UART)

I

Flashing your FallCTF Badges!

R

The Overview

- We need a toolchain to compile
our C code
(xtensa-esp-elf-*)

- We need a build tool to create
an ESP32-compatible
application (CMake, Ninja)

- We need a flashing tool to copy
that application to Flash
Memory (esptool.py)

CMake / IDE

Source: ESP-IDF Programming Guide

UA

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html#software

The Overview

- We need a toolchain to compile
our C code
(xtensa-esp-elf-*)

- We need a build tool to create
an ESP32-compatible
application (CMake, Ninja)

- We need a flashing tool to copy
that application to Flash
Memory (esptool.py)

- Espressif’s IDF handles all of
these!

CMake / IDE

Source: ESP-IDF Programming Guide

UA

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/index.html#software

Installing ESP IDF

- Espressif loT Development Framework

- https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-
started/index.html
- Simplest method:
- Install the “ESP-IDF” VSCode Extension
- Find the ESP-IDF tab on the left
- Click “Configure ESP-IDF Extension”
- Use “GitHub” download server
- Click “Install”

LS

https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32s2/get-started/index.html

Find your ESP32’s Serial Port

- Plug in the ESP32
- On Windows:

- Open “Device Manager”
- Find the port that’s newly added
- Should be COM#

- On Mac/Linux:
- /dev/ttyUSBO or /dev/ttyACMO
- Check which one gets created when
you plug in the ESP32 (1s /dev)

- Replace “PORT” in any future
commands with this value

== Device Manager

File Action View Help
s lfi'-: == | = |

4 = tdk-kmb-op780
/& Computer
—w Disk drives
B Display adapters
= DVD/CD-ROM drives
';‘_;;‘ Human Interface Devices
g IDE ATA/ATAPI controllers
== Keyboards
| Mice and other pointing devices

roCessors

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/get-started/establish-serial-connection.html#check-port-on-windows

Download an Example Project

- They’re actually already downloaded on your PC! (If you installed
ESP IDF correctly)

- Use VSCode extension to get the hello_world project

0

Flash your FallCTF Badges

- c¢d project-directory
- 1df.py set-target esp32s2

- 1idf.py menuconfig
- Component config > ESP System Settings > Channel for console output
- Change from “Default: UARTO” to “USB CDC”

- Switch the ESP to bootloader mode (aka download mode)
- Press and hold “B” on the front (boot button)

- Press and release “SW4” on the back (reset button)
- Release “B”

- 1df.py -p PORT -b 115200 flash
- 1idf.py -p PORT -b 115200 monitor
L&

Embedded Software Stack

Application Programming Interface

| Middleware

HAL Abstraction Layer

oA

An Aside: RTOS vs Bare Metal Boot

Process

MicroPython

Stage 1 Bootloader

Stage 2 Bootloader

(MicroPython)

l

Python Program
(The Badge)

ESP IDF RTOS

Stage 1 Bootloader

Stage 2 Bootloader
(FreeRTOS)

Our C Program

Bare Metal

Stage 1 Bootloader

Stage 2 Bootloader
(Our C Program!)

R

The Boot Process, In words

- Stage 1 Bootloader
- Hardcoded, cannot be modified
- Once finished, it jumps to a fixed memory address (0x1000)

- Stage 2 Bootloader
- Is flashed to address 6x1060
- Can be anything we want, but is generally FreeRTOS

Flashing
Then deploy the firmware to the board, starting at address 0x1000:

esptool.py --baud 460800 write_flash 0x1000 ESP32_BOARD_NAME-DATE-VERSION.bin
Replace ESP32 BOARD NAME-DATE-VERSION.bin with the .bin file downloaded from this page.

Source: MicroPython (ESP32 S2)

0

https://micropython.org/download/ESP32_GENERIC_S2/

The Boot Process, In words

- Stage 1 Bootloader

- Hardcoded, cannot be modified

- Once finished, it jumps to a fixed memory address (0x1000)
- Stage 2 Bootloader

- Is flashed to address 6x1060
- Can be anything we want, but is generally FreeRTOS

- FreeRTOS

- Reads address 0x8000 to view a list of all flashed images

- Jumps to address 9x16000 to run the first user program
- The User Program

- Is flashed to address ©x10000

0

So How Do We Run Bare Metal?

- Write a C Program
- To run bare metal, it should have a call_start_cpuO function

- Write a custom linker script

- This tells the compiler where to put certain parts of main.c
- For example, code in IRAM and variables in DRAM

- Write a Makefile
- This will compile your code to main.elf using the linker script

- Convert the ELF file to a binary image using esptool
- Flash the binary image at 0x1000 using esptool

0

The Bare Metal C Program

#include <string.h>

extern unsigned int sbss, ebss, sidata, sdata, edata;

void _ attribute ((noreturn)) call start cpuO() {
memset (& sbss, 0, (& ebss - & sbss) * sizeof(sbss));
memmove (& sdata, & sidata, (& edata - & sdata) * sizeof(sdata));
main () ;

}

static volatile int a = 0;

int main(void) {
while (1) {
++a;
}

return O;

Source: Vivonomicon

https://vivonomicon.com/2019/03/30/getting-started-with-bare-metal-esp32-programming/

Compile and Flash

- ¢d project-directory
- make

- esptool.py -c esp32s2 elf2image --flash mode="dio"
--flash_freq "40m" --flash _size "4MB" -0 main.bin main.elf

- Switch the ESP to bootloader mode

- esptool.py -c esp32s2 -p PORT -b 115200 --before
default reset -a hard reset write flash -z --flash mode dio
--flash _freq 40m --flash size detect 0x1000 main.bin
&S
SN\

Then What?

- The program is flashed, and esptool already rebooted it for us

- However, we won'’t see anything when we use idf.py monitor
- Or even tools like screen, picocom, minicom, etc.

- Why?

0

Drivers

- To do anything useful, we need drivers

- To access the serial port, the device needs to communicate using
UART (Universal Asynchronous Receiver-Transmitter)

- This is difficult (and complex)!

struct uart_regs {
union {
char rbr; // DLAB=0, read
char thr; // DLAB=0, write
uint8_t dl1; // DLAB=1
b

#tdefine DLAB (1 << 7)
#define DR (1 << 0)

#tdefine THRE (1 << 5)
#define DRIE (1 << 0)
#define THREIE (1 << 1) };

union {
uint8_t ier; // DLAB=0
uint8_t dlm; // DLAB=1

void uart_init(void) { unioq { B
UARTO.lcr = 0x0; // DLAB=0 uint8_t iir; // rezfd
UARTO.ier = DRIE; // enable DR intr. uint8_t fcr; // write

} }i

uint8_t lcr;
uint8_t mcr;
uint8_t 1lsr;
uint8_t msr;
uint8_t scr;

#tdefine RBUFSZ 64 // must be a power of 2

struct ringbuf {
volatile int hpos; // head position (from where chars are removed)
volatile int tpos; // tail position (where chars are inserted)
char data[RBUFSZ];

b

// Initialize a ring buffer (fixed-size FIFO)

void rbuf_init(struct ringbuf * rbuf) {
rbuf->hpos = 0;
rbuf->tpos = 0;

}

// Insert a character into the ring buffer at the tail of the queue

void rbuf_put(struct ringbuf * rbuf, char c) {
rbuf->datal[rbuf->tpos++ % RBUFSZ] = c;

}

// Remove a character from the ring buffer from the head of the queue
char rbuf_get(struct ringbuf * rbuf) {

return rbuf->data[rbuf->hpos++ % RBUFSZ];
}

Source: K. Levchenko (ECE 391)

0

https://courses.grainger.illinois.edu/ece391/fa2025/secure/lec/Device-IO-student.pdf

Next Meetings

2025-09-29 « Next Monday
- Embedded 103: Breadboarding and Hardware

0

Meeting content can be found at
sigpwny.com/meetings.

c%g SIGPwny

